C8051F52x/F52xA/F53x/F53xA

Analog Peripherals

- 12-Bit ADC

- $\quad \pm 1$ LSB INL; no missing codes
- Programmable throughput up to 200 ksps
- Up to 6/16 external inputs
- Data dependent windowed interrupt generator
- Built-in temperature sensor
- Comparator
- Programmable hysteresis and response time
- Configurable as wake-up or reset source
- Low current
- POR/Brownout Detector
- Voltage Reference-1.5 and 2.2 V (programmable)
On-Chip Debug
- On-chip debug circuitry facilitates full-speed, nonintrusive in-system debug (No emulator required)
- Provides breakpoints, single stepping
- Inspect/modify memory and registers
- Complete development kit

Supply Voltage 1.8 to 5.25 V
Built-in LDO regulator
High Speed 8051μ C Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz system clock
- Expanded interrupt handler

Memory

- $\quad 8 / 4 / 2 \mathrm{kB}$ Flash; In-system byte programmable in 512 byte sectors
- 256 bytes internal data RAM

Digital Peripherals

- 16/6 port I/O; push-pull or open-drain, 5 V tolerant
- Hardware SPITM, and UART serial port
- Hardware LIN (both master and slave, compatible with V1.3 and V2.0)
- Three general purpose 16-bit counter/timers
- Programmable 16-bit counter/timer array with three capture/compare modules, WDT

Clock Sources

- Internal oscillators: $24.5 \mathrm{MHz} \pm 0.5 \%$ accuracy supports UART and LIN-Master operation
- External oscillator: Crystal, RC, C, or Clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly

Packages:

- 10-Pin DFN ($3 \times 3 \mathrm{~mm}$)
- 20-pin QFN ($4 \times 4 \mathrm{~mm}$)

20-pin TSSOP
Temperature Range: $\mathbf{- 4 0}$ to $+125^{\circ} \mathrm{C}$

C8051F52x/F52xA/F53x/F53xA

Notes:

C8051F52x-53x

1. System Overview 15
1.1. CIP-51 ${ }^{\text {тм }}$ Microcontroller 20
1.1.1. Fully 8051 Compatible Instruction Set 20
1.1.2. Improved Throughput 20
1.1.3. Additional Features 20
1.1.4. On-Chip Debug Circuitry 20
1.2. On-Chip Memory 22
1.3. Operating Modes 23
1.4. 12-Bit Analog to Digital Converter 24
1.5. Programmable Comparator 25
1.6. Voltage Regulator 25
1.7. Serial Port 25
1.8. Port Input/Output 26
2. Absolute Maximum Ratings 27
3. Global DC Electrical Characteristics 28
4. Pinout and Package Definitions 30
5. 12-Bit ADC (ADC0) 47
5.1. Analog Multiplexer 47
5.2. Temperature Sensor 48
5.3. ADCO Operation 49
5.3.1. Starting a Conversion 49
5.3.2. Tracking Modes 49
5.3.3. Timing 50
5.3.4. Burst Mode 52
5.3.5. Output Conversion Code 53
5.3.6. Settling Time Requirements 54
5.4. Selectable Gain 54
5.4.1. Calculating the Gain Value 55
5.4.2. Setting the Gain Value 56
5.5. Programmable Window Detector 62
5.5.1. Window Detector In Single-Ended Mode 65
6. Voltage Reference 67
7. Voltage Regulator (REG0) 70
8. Comparator 72
9. CIP-51 Microcontroller 78
9.1. Instruction Set 79
9.1.1. Instruction and CPU Timing 79
9.1.2. MOVX Instruction and Program Memory 80
9.2. Register Descriptions 83
9.3. Power Management Modes 86
9.3.1. Idle Mode 87
9.3.2. Stop Mode 87
9.3.3. Suspend Mode 87
10. Memory Organization and SFRs 89
10.1.Program Memory 89

C8051F52x/F52xA/F53x/F53xA

10.2.Data Memory 90
10.3.General Purpose Registers 90
10.4.Bit Addressable Locations 90
10.5.Stack 90
10.6.Special Function Registers 91
11. Interrupt Handler 95
11.1.MCU Interrupt Sources and Vectors 95
11.2.Interrupt Priorities 95
11.3.Interrupt Latency 95
11.4. Interrupt Register Descriptions 97
11.5.External Interrupts 101
12. Reset Sources 103
12.1.Power-On Reset 104
12.2.Power-Fail Reset / VDD Monitor 105
12.3.External Reset 106
12.4.Missing Clock Detector Reset 106
12.5.Comparator Reset 106
12.6.PCA Watchdog Timer Reset 107
12.7.Flash Error Reset 107
12.8.Software Reset 107
13. Flash Memory 110
13.1.Programming The Flash Memory 110
13.1.1.Flash Lock and Key Functions 110
13.1.2.Flash Erase Procedure 111
13.1.3.Flash Write Procedure 111
13.2.Flash Write and Erase Guidelines 112
$13.2 .1 . \mathrm{V}_{\mathrm{DD}}$ Maintenance and the V_{DD} monitor 112
13.2.2.PSWE Maintenance 112
13.2.3.System Clock 113
13.3.Non-volatile Data Storage 114
13.4.Security Options 114
14. Port Input/Output 118
14.1.Priority Crossbar Decoder 120
14.2.Port I/O Initialization 125
14.3.General Purpose Port I/O 127
15. Oscillators 135
15.1.Programmable Internal Oscillator 135
15.1.1.Internal Oscillator Suspend Mode 136
15.2.External Oscillator Drive Circuit 139
15.2.1.Clocking Timers Directly Through the External Oscillator 139
15.2.2.External Crystal Example 139
15.2.3.External RC Example. 142
15.2.4.External Capacitor Example 142
15.3.System Clock Selection 144
16. UART0 146

C8051F52x-53x

16.1.Enhanced Baud Rate Generation 147
16.2.Operational Modes 148
16.2.1.8-Bit UART 148
16.2.2.9-Bit UART 149
16.3.Multiprocessor Communications 149
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A) 154
17.1. Software Interface with the LIN Peripheral 155
17.2.LIN Interface Setup and Operation 155
17.2.1.Mode Definition 155
17.2.2.Baud Rate Options: Manual or Autobaud 155
17.2.3.Baud Rate Calculations - Manual Mode 155
17.2.4.Baud Rate Calculations - Automatic Mode 157
17.3.LIN Master Mode Operation 158
17.4.LIN Slave Mode Operation 159
17.5.Sleep Mode and Wake-Up 160
17.6.Error Detection and Handling 161
17.7.LIN Registers 161
17.7.1.LIN Direct Access SFR Registers Definition 161
17.7.2.LIN Indirect Access SFR Registers Definition 163
18. Enhanced Serial Peripheral Interface (SPIO) 171
18.1.Signal Descriptions 172
18.1.1.Master Out, Slave In (MOSI) 172
18.1.2.Master In, Slave Out (MISO) 172
18.1.3.Serial Clock (SCK) 172
18.1.4.Slave Select (NSS) 172
18.2.SPIO Master Mode Operation 173
18.3.SPIO Slave Mode Operation 174
18.4.SPIO Interrupt Sources 175
18.5.Serial Clock Timing 176
18.6.SPI Special Function Registers 176
19.Timers 184
19.1.Timer 0 and Timer 1 184
19.1.1.Mode 0: 13-bit Counter/Timer 184
19.1.2.Mode 1: 16-bit Counter/Timer 186
19.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload 186
19.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only) 187
19.2.Timer 2 192
19.2.1.16-bit Timer with Auto-Reload 192
19.2.2.8-bit Timers with Auto-Reload 193
19.2.3.External Capture Mode 194
20. Programmable Counter Array (PCAO) 197
20.1.PCA Counter/Timer 198
20.2.Capture/Compare Modules 199
20.2.1.Edge-triggered Capture Mode 200
20.2.2.Software Timer (Compare) Mode 201

C8051F52x/F52xA/F53x/F53xA

20.2.3. High Speed Output Mode 202
20.2.4.Frequency Output Mode 203
20.2.5.8-Bit Pulse Width Modulator Mode 204
20.2.6.16-Bit Pulse Width Modulator Mode 205
20.3.Watchdog Timer Mode 205
20.3.1.Watchdog Timer Operation 206
20.3.2.Watchdog Timer Usage 207
20.4.Register Descriptions for PCA 209
21. Device Specific Behavior 213
21.1.Device Identification 213
21.2.Reset Pin Behavior 214
21.3.Reset Time Delay 214
21.4.UART Pins 214
21.5.LIN 215
21.5.1.Stop Bit Check 215
21.5.2.Synch Break and Synch Field Length Check 215
22. C2 Interface 216
22.1.C2 Interface Registers 216
22.2.C2 Pin Sharing 218
Document Change List 219
Contact Information 220

C8051F52x-53x

1. System Overview
Figure 1.1. C8051F53xA Block Diagram 18
Figure 1.2. C8051F52xA Block Diagram 18
Figure 1.3. C8051F53x Block Diagram 19
Figure 1.4. C8051F52x Block Diagram 19
Figure 1.5. Development/In-System Debug Diagram 21
Figure 1.6. Memory Map 22
Figure 1.7. 12-Bit ADC Block Diagram 24
Figure 1.8. Comparator Block Diagram 25
Figure 1.9. Port I/O Functional Block Diagram 26
2. Absolute Maximum Ratings
3. Global DC Electrical Characteristics
4. Pinout and Package Definitions
Figure 4.1. DFN-10 Package Diagram* 33
Figure 4.2. DFN-10 Landing Diagram 35
Figure 4.3. TSSOP-20 Package Diagram 39
Figure 4.4. TSSOP-20 Landing Diagram 40
Figure 4.5. QFN-20 Package Diagram* 44
Figure 4.6. QFN-20 Landing Diagram 46
5. 12-Bit ADC (ADC0)
Figure 5.1. ADC0 Functional Block Diagram 47
Figure 5.2. Typical Temperature Sensor Transfer Function 48
Figure 5.3. ADC0 Tracking Modes 50
Figure 5.4. 12-Bit ADC Tracking Mode Example 51
Figure 5.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4 52
Figure 5.6. ADC0 Equivalent Input Circuits 54
Figure 5.7. ADC Window Compare Example: Right-Justified Single-Ended Data 65
Figure 5.8. ADC Window Compare Example: Left-Justified Single-Ended Data 65
6. Voltage Reference
Figure 6.1. Voltage Reference Functional Block Diagram 67
7. Voltage Regulator (REG0)
Figure 7.1. External Capacitors for Voltage Regulator Input/Output 70
8. Comparator
Figure 8.1. Comparator Functional Block Diagram 72
Figure 8.2. Comparator Hysteresis Plot 73
9. CIP-51 Microcontroller
Figure 9.1. CIP-51 Block Diagram 78
10. Memory Organization and SFRs
Figure 10.1. Memory Map 89
11. Interrupt Handler
12. Reset Sources
Figure 12.1. Reset Sources 103
Figure 12.2. Power-On and $V_{D D}$ Monitor Reset Timing 104
13. Flash Memory
Figure 13.1. Flash Program Memory Map 114

C8051F52x/F52xA/F53x/F53xA

14. Port Input/Output
Figure 14.1. Port I/O Functional Block Diagram 118
Figure 14.2. Port I/O Cell Block Diagram 119
Figure 14.3. Crossbar Priority Decoder with No Pins Skipped (TSSOP 20 and QFN 20)120
Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped (TSSOP 20 and QFN 20)122
Figure 14.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10) 123
Figure 14.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10) 124
15. Oscillators
Figure 15.1. Oscillator Diagram 135
Figure 15.2. 32 kHz External Crystal Example 141
16. UART0
Figure 16.1. UARTO Block Diagram 146
Figure 16.2. UARTO Baud Rate Logic 147
Figure 16.3. UART Interconnect Diagram 148
Figure 16.4. 8-Bit UART Timing Diagram 148
Figure 16.5. 9-Bit UART Timing Diagram 149
Figure 16.6. UART Multi-Processor Mode Interconnect Diagram 150
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)
Figure 17.1. LIN Block Diagram 154
18. Enhanced Serial Peripheral Interface (SPIO)
Figure 18.1. SPI Block Diagram 171
Figure 18.2. Multiple-Master Mode Connection Diagram 174
Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram 174
Figure 18.4. 4-Wire Single Master and Slave Mode Connection Diagram 174
Figure 18.5. Data/Clock Timing Relationship 176
Figure 18.6. SPI Master Timing (CKPHA = 0) 181
Figure 18.7. SPI Master Timing (CKPHA = 1) 181
Figure 18.8. SPI Slave Timing (CKPHA = 0) 182
Figure 18.9. SPI Slave Timing (CKPHA = 1) 182
19. Timers
Figure 19.1. T0 Mode 0 Block Diagram 185
Figure 19.2. TO Mode 2 Block Diagram 186
Figure 19.3. T0 Mode 3 Block Diagram 187
Figure 19.4. Timer 2 16-Bit Mode Block Diagram 192
Figure 19.5. Timer 2 8-Bit Mode Block Diagram 193
Figure 19.6. Timer 2 Capture Mode Block Diagram 194
20. Programmable Counter Array (PCA0)
Figure 20.1. PCA Block Diagram. 197
Figure 20.2. PCA Counter/Timer Block Diagram 198
Figure 20.3. PCA Interrupt Block Diagram 199
Figure 20.4. PCA Capture Mode Diagram 200
Figure 20.5. PCA Software Timer Mode Diagram 201
Figure 20.6. PCA High-Speed Output Mode Diagram 202

C8051F52x-53x

Figure 20.7. PCA Frequency Output Mode 203
Figure 20.8. PCA 8-Bit PWM Mode Diagram 204
Figure 20.9. PCA 16-Bit PWM Mode 205
Figure 20.10. PCA Module 2 with Watchdog Timer Enabled 206
21. Device Specific Behavior
Figure 21.1. Device Package - TSSOP 20 213
Figure 21.2. Device Package - QFN 20. 213
Figure 21.3. Device Package - DFN 10 214
22. C2 Interface
Figure 22.1. Typical C2 Pin Sharing 218

C8051F52x/F52xA/F53x/F53xA

1. System Overview
Table 1.1. Product Selection Guide 16
Table 1.2. Operating Modes Summary 23
2. Absolute Maximum Ratings
Table 2.1. Absolute Maximum Ratings 27
3. Global DC Electrical Characteristics
Table 3.1. Global DC Electrical Characteristics 28
4. Pinout and Package Definitions
Table 4.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10) 30
Table 4.2. DFN-10 Package Diagram Dimensions 34
Table 4.3. DFN-10 Landing Diagram Dimensions 35
Table 4.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20) 36
Table 4.5. TSSOP-20 Package Diagram Dimensions 39
Table 4.6. TSSOP-20 Landing Diagram Dimensions 40
Table 4.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20) 42
Table 4.8. QFN-20 Package Diagram Dimensions 45
Table 4.9. QFN-20 Landing Diagram Dimensions 46
5. 12-Bit ADC (ADC0)
Table 5.1. ADC0 Electrical Characteristics 66
6. Voltage Reference
Table 6.1. Voltage Reference Electrical Characteristics 69
7. Voltage Regulator (REG0)
Table 7.1. Voltage Regulator Electrical Specifications 71
8. Comparator
Table 8.1. Comparator Electrical Characteristics 77
9. CIP-51 Microcontroller Table 9.1. CIP-51 Instruction Set Summary 80
10. Memory Organization and SFRs
Table 10.1. Special Function Register (SFR) Memory Map 91
Table 10.2. Special Function Registers 92
11. Interrupt Handler
Table 11.1. Interrupt Summary 96
12. Reset Sources
Table 12.1. Reset Electrical Characteristics 109
13. Flash Memory
Table 13.1. Flash Security Summary 115
Table 13.2. Flash Electrical Characteristics 117
14. Port Input/Output
Table 14.1. Port I/O DC Electrical Characteristics 134
15. Oscillators
Table 15.1. Oscillator Electrical Characteristics 145
16. UART0
Table 16.1. Timer Settings for Standard Baud Rates Using the Internal Oscillator 153
17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)

C8051F52x-53x

Table 17.1. Baud-Rate Calculation Variable Ranges 156
Table 17.2. Manual Baud Rate Parameters Examples 157
Table 17.3. Autobaud Parameters Examples 158
Table 17.4. LIN Registers* (Indirectly Addressable) 163
18. Enhanced Serial Peripheral Interface (SPIO) Table 18.1. SPI Slave Timing Parameters 183
19. Timers
20. Programmable Counter Array (PCA0)
Table 20.1. PCA Timebase Input Options 198
Table 20.2. PCAOCPM Register Settings for PCA Capture/Compare Modules 199
Table 20.3. Watchdog Timer Timeout Intervals1 208
21. Device Specific Behavior
22. C2 Interface

C8051F52x/F52xA/F53x/F53xA

SFR Definition 5.4. ADCOMX: ADC0 Channel Select 58
SFR Definition 5.5. ADC0CF: ADC0 Configuration 59
SFR Definition 5.6. ADCOH: ADC0 Data Word MSB 60
SFR Definition 5.7. ADCOL: ADC0 Data Word LSB 60
SFR Definition 5.8. ADC0CN: ADC0 Control 61
SFR Definition 5.9. ADCOTK: ADC0 Tracking Mode Select 62
SFR Definition 5.10. ADC0GTH: ADC0 Greater-Than Data High Byte 63
SFR Definition 5.11. ADC0GTL: ADC0 Greater-Than Data Low Byte 63
SFR Definition 5.12. ADCOLTH: ADC0 Less-Than Data High Byte 64
SFR Definition 5.13. ADC0LTL: ADC0 Less-Than Data Low Byte 64
SFR Definition 6.1. REFOCN: Reference Control 68
SFR Definition 7.1. REG0CN: Regulator Control 71
SFR Definition 8.1. CPTOCN: Comparator0 Control 74
SFR Definition 8.2. CPTOMX: Comparator0 MUX Selection 75
SFR Definition 8.3. CPTOMD: Comparator0 Mode Selection 76
SFR Definition 9.1. SP: Stack Pointer 83
SFR Definition 9.2. DPL: Data Pointer Low Byte 84
SFR Definition 9.3. DPH: Data Pointer High Byte 84
SFR Definition 9.4. PSW: Program Status Word 85
SFR Definition 9.5. ACC: Accumulator 86
SFR Definition 9.6. B: B Register 86
SFR Definition 9.7. PCON: Power Control 88
SFR Definition 11.1. IE: Interrupt Enable 97
SFR Definition 11.2. IP: Interrupt Priority 98
SFR Definition 11.3. EIE1: Extended Interrupt Enable 1 99
SFR Definition 11.4. EIP1: Extended Interrupt Priority 1 100
SFR Definition 11.5. IT01CF: INT0/INT1 Configuration 102
SFR Definition 12.1. VDDMON: VDD Monitor Control 106
SFR Definition 12.2. RSTSRC: Reset Source 108
SFR Definition 13.1. PSCTL: Program Store R/W Control 116
SFR Definition 13.2. FLKEY: Flash Lock and Key 116
SFR Definition 14.1. XBR0: Port I/O Crossbar Register 0 126
SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1 127
SFR Definition 14.3. P0: Port0 128
SFR Definition 14.4. POMDIN: Port0 Input Mode 128
SFR Definition 14.5. POMDOUT: Port0 Output Mode 129
SFR Definition 14.6. P0SKIP: Port0 Skip 129
SFR Definition 14.7. POMAT: Port0 Match 130
SFR Definition 14.8. POMASK: Port0 Mask 130
SFR Definition 14.9. P1: Port1 131
SFR Definition 14.10. P1MDIN: Port1 Input Mode 131
SFR Definition 14.11. P1MDOUT: Port1 Output Mode 132
SFR Definition 14.12. P1SKIP: Port1 Skip 132
SFR Definition 14.13. POSKIP: Port0 Skip 133
SFR Definition 14.14. P1MAT: Port1 Match 133

C8051F52x-53x

SFR Definition 14.15. P1MASK: Port1 Mask 133
SFR Definition 15.1. OSCICN: Internal Oscillator Control 137
SFR Definition 15.2. OSCICL: Internal Oscillator Calibration 138
SFR Definition 15.3. OSCIFIN: Internal Fine Oscillator Calibration 138
SFR Definition 15.4. OSCXCN: External Oscillator Control 143
SFR Definition 15.5. CLKSEL: Clock Select 144
SFR Definition 16.1. SCONO: Serial Port 0 Control 151
SFR Definition 16.2. SBUF0: Serial (UART0) Port Data Buffer 152
SFR Definition 17.1. LINADDR: Indirect Address Register 161
SFR Definition 17.2. LINDATA: LIN Data Register 162
SFR Definition 17.3. LINCF Control Mode Register 162
SFR Definition 17.4. LINODT1: LIN0 Data Byte 1 163
SFR Definition 17.5. LINODT2: LIN0 Data Byte 2 164
SFR Definition 17.6. LINODT3: LIN0 Data Byte 3 164
SFR Definition 17.7. LINODT4: LIN0 Data Byte 4 164
SFR Definition 17.8. LIN0DT5: LIN0 Data Byte 5 164
SFR Definition 17.9. LIN0DT6: LIN0 Data Byte 6 165
SFR Definition 17.10. LINODT7: LINO Data Byte 7 165
SFR Definition 17.11. LINODT8: LINO Data Byte 8 165
SFR Definition 17.12. LINOCTRL: LINO Control Register 166
SFR Definition 17.13. LINOST: LINO STATUS Register 167
SFR Definition 17.14. LINOERR: LINO ERROR Register 168
SFR Definition 17.15. LINOSIZE: LINO Message Size Register 169
SFR Definition 17.16. LINODIV: LINO Divider Register 169
SFR Definition 17.17. LINOMUL: LINO Multiplier Register 170
SFR Definition 17.18. LINOID: LINO ID Register 170
SFR Definition 18.1. SPIOCFG: SPIO Configuration 177
SFR Definition 18.2. SPIOCN: SPIO Control 178
SFR Definition 18.3. SPIOCKR: SPIO Clock Rate 179
SFR Definition 18.4. SPIODAT: SPIO Data 180
SFR Definition 19.1. TCON: Timer Control 188
SFR Definition 19.2. TMOD: Timer Mode 189
SFR Definition 19.3. CKCON: Clock Control 190
SFR Definition 19.4. TLO: Timer 0 Low Byte 191
SFR Definition 19.5. TL1: Timer 1 Low Byte 191
SFR Definition 19.6. TH0: Timer 0 High Byte 191
SFR Definition 19.7. TH1: Timer 1 High Byte 191
SFR Definition 19.8. TMR2CN: Timer 2 Control 195
SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte 196
SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte 196
SFR Definition 19.11. TMR2L: Timer 2 Low Byte 196
SFR Definition 19.12. TMR2H Timer 2 High Byte 196
SFR Definition 20.1. PCAOCN: PCA Control 209
SFR Definition 20.2. PCAOMD: PCA Mode 210
SFR Definition 20.3. PCAOCPMn: PCA Capture/Compare Mode 211

C8051F52x/F52xA/F53x/F53xA

SFR Definition 20.4. PCA0L: PCA Counter/Timer Low Byte 212
SFR Definition 20.5. PCAOH: PCA Counter/Timer High Byte 212
SFR Definition 20.6. PCAOCPLn: PCA Capture Module Low Byte 212
SFR Definition 20.7. PCA0CPHn: PCA Capture Module High Byte 212
C2 Register Definition 22.1. C2ADD: C2 Address 216
C2 Register Definition 22.2. DEVICEID: C2 Device ID 216
C2 Register Definition 22.3. REVID: C2 Revision ID 217
C2 Register Definition 22.4. FPCTL: C2 Flash Programming Control 217
C2 Register Definition 22.5. FPDAT: C2 Flash Programming Data 217

C8051F52x/F52xA/F53x/F53xA

1. System Overview

The C8051F52x/52xA/53x/53xA family of devices are fully integrated, low power, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- True 12-bit 200 ksps ADC with analog multiplexer and up to 16 analog inputs
- Precision programmable 24.5 MHz internal oscillator that is $\pm 0.5 \%$ across voltage and temperature
- Up to 7680 bytes of on-chip Flash memory
- 256 bytes of on-chip RAM
- Enhanced UART, and SPI serial interfaces implemented in hardware
- LIN 2.0 peripheral (V2.0 and V1.3 compatible, master and slave modes)
- Three general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, $\mathrm{V}_{\text {DD }}$ Monitor, and Temperature Sensor
- On-chip Voltage Comparator
- Up to 16 Port I/O

With on-chip Power-On Reset, $V_{D D}$ monitor, Watchdog Timer, and clock oscillator, the C8051F52x/52xA/53x/53xA devices are truly standalone system-on-a-chip solutions. The Flash memory is byte writable and can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Laboratories 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system programming and debugging without occupying package pins.

Each device is specified for 1.8 to 5.25 V operation (supply voltage can be up to 5.25 V using on-chip regulator) over the automotive temperature range (-40 to $+125^{\circ} \mathrm{C}$). The $\mathrm{F} 52 x / \mathrm{F} 52 x \mathrm{~A}$ is available in the DFN10 (3 x 3 mm) package. The F53x/F53xA is available in the QFN20 ($4 \times 4 \mathrm{~mm}$) or the TSSOP20 package.

C8051F52x/F52xA/F53x/F53xA

Table 1.1. Product Selection Guide

| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

C8051F52x/F52xA/F53x/F53xA

Table 1.1. Product Selection Guide

			$\sum_{\mathbb{\alpha}}$		$\overline{0}$	$\frac{\stackrel{\rightharpoonup}{x}}{\frac{\alpha}{4}}$			$\begin{aligned} & \text { no } \\ & \text { Q } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\underset{J}{\geqq}$					$\begin{aligned} & \mathbb{0} \\ & \stackrel{\pi}{0} \\ & \stackrel{\pi}{0} \end{aligned}$
C8051F531-IM	25	8 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	QFN-20
C8051F533-IM	25	4 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	QFN-20
C8051F534-IM	25	4 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	QFN-20
C8051F536-IM	25	2 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	QFN-20
C8051F537-IM	25	2 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	QFN-20
C8051F530-IT	25	8 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	TSSOP-20
C8051F531-IT	25	8 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	TSSOP-20
C8051F533-IT	25	4 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	TSSOP-20
C8051F534-IT	25	4 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	TSSOP-20
C8051F536-IT	25	2 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	TSSOP-20
C8051F537-IT	25	2 kB	256	0.5\%	\checkmark	\checkmark	3	\checkmark	16	\checkmark	-	\checkmark	\checkmark	\checkmark	-	TSSOP-20

C8051F52x/F52xA/F53x/F53xA

Figure 1.1. C8051F53xA Block Diagram

Figure 1.2. C8051F52xA Block Diagram

C8051F52x/F52xA/F53x/F53xA

Figure 1.3. C8051F53x Block Diagram

Figure 1.4. C8051F52x Block Diagram

C8051F52x/F52xA/F53x/F53xA

1.1. \quad CIP-51 ${ }^{\text {TM }}$ Microcontroller

1.1.1. Fully 8051 Compatible Instruction Set

The C8051F52x/52xA/53x/53xA devices use Silicon Laboratories' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set. Standard $803 x / 805 x$ assemblers and compilers can be used to develop software. The C8051F52x/52xA/53x/53xA family has a superset of all the peripherals included with a standard 8052.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12-to-24 MHz. By contrast, the CIP51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz , it has a peak throughput of 25 MIPS . The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time..

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

1.1.3. Additional Features

The C8051F52x/52xA/53x/53xA family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.

An extended interrupt handler allows the numerous analog and digital peripherals to operate independently of the controller core and interrupt the controller only when necessary. By requiring less intervention from the microcontroller core, an interrupt-driven system is more efficient and allows for easier implementation of multi-tasking, real-time systems.

Eight reset sources are available: power-on reset circuitry (POR), an on-chip V_{DD} monitor, a Watchdog Timer, a Missing Clock Detector, a voltage level detection from Comparator, a forced software reset, an external reset pin, and an illegal Flash access protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The internal oscillator is factory calibrated to $24.5 \mathrm{MHz} \pm 0.5 \%$ across the entire operating temperature and voltage range. An external oscillator drive circuit is also included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock.

1.1.4. On-Chip Debug Circuitry

The C8051F52x/52xA/53x/53xA devices include on-chip Silicon Laboratories 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part installed in the end application.

Silicon Laboratories' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debug-
ging. All the peripherals (except for the ADC) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F530A-DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F52x/52xA/53x/53xA MCUs. The kit includes software with a developer's studio and debugger, a USB debug adapter, a target application board with the associated MCU installed, and the required cables and wall-mount power supply. The development kit requires a computer with Windows installed. As shown in Figure 1.5, the PC is connected to the USB debug adapter. A six-inch ribbon cable connects the USB debug adapter to the user's application board, picking up the two C 2 pins and GND.

The Silicon Laboratories IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Laboratories' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.

Figure 1.5. Development/In-System Debug Diagram

C8051F52x/F52xA/F53x/F53xA

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 7680 bytes ('F520/OA/1/1A and 'F530/0A/1/1A), 4 kB ('F523/3A/4/4A and C8051F53x/53xA), or 2 kB ('F526/6A/7/7A and 'F536/6A/7/7A) of Flash. This memory is byte writable and erased in 512-byte sectors, and requires no special off-chip programming voltage.
PROGRAM/DATA MEMORY (Flash)

'F523/3A/4/4A and 'F533/3A/4/4A

'F526/6A/7/7A and 'F536/6A/7/7A

0×0800	
$0 \times 07 F F$	RESERVED
2 kB Flash	
(In-System Programmable in 512 Byte Sectors)	

Figure 1.6. Memory Map

C8051F52x/F52xA/F53x/F53xA

1.3. Operating Modes

The C8051F52x/52xA/53x/53xA devices have four operating modes: Active (Normal), Idle, Suspend, and Stop. Active mode occurs during normal operation when the oscillator and peripherals are active. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Suspend and Stop mode, the CPU is halted, all interrupts and timers are inactive, and the internal oscillator is stopped. The various operating modes are described in Table 1.2 below:

Table 1.2. Operating Modes Summary

	Properties	Power Consumption	How Entered?	How Exited?
Active	- SYSCLK active - CPU active (accessing Flash) - Peripherals active or inactive depending on user settings	Full	-	-
Idle	- SYSCLK active - CPU inactive (not accessing Flash) - Peripherals active or inactive depending on user settings	Less than Full	$\begin{gathered} \hline \text { IDLE } \\ \text { (PCON.0) } \end{gathered}$	Any enabled interrupt or device reset
Suspend	- Internal oscillator inactive - If SYSCLK is derived from the internal oscillator, the peripherals and the CIP-51 will be stopped	Low	$\begin{aligned} & \text { SUSPEND } \\ & \text { (OSCICN.5) } \end{aligned}$	Port 0 event match Port 1 event match Comparator 0 enabled and output is logic ' 0 '
Stop	- SYSCLK inactive - CPU inactive (not accessing Flash) - Digital peripherals inactive; analog peripherals active or inactive depending on user settings	Very low	$\begin{gathered} \text { STOP } \\ \text { (PCON.1) } \end{gathered}$	Device Reset

See Section "9.3. Power Management Modes" on page 86 for Idle and Stop mode details. See Section "15.1.1. Internal Oscillator Suspend Mode" on page 136 for more information on Suspend mode.

C8051F52x/F52xA/F53x/F53xA

1.4. 12-Bit Analog to Digital Converter

The C8051F52x/52xA/53x/53xA devices include an on-chip 12-bit SAR ADC with a maximum throughput of 200 ksps . The ADC system includes a configurable analog multiplexer that selects the positive ADC input, which is measured with respect to GND. Ports 0 and 1 are available as ADC inputs; additionally, the ADC includes an innovative programmable gain stage which allows the ADC to sample inputs sources greater than the VREF voltage. The on-chip Temperature Sensor output and the core supply voltage (V_{DD}) are also available as ADC inputs. User firmware may shut down the ADC or use it in Burst Mode to save power.

Conversions can be initiated in four ways: a software command, an overflow of Timer 1, an overflow of Timer 2, or an external convert start signal. This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indicated by a status bit and an interrupt (if enabled) and occur after 1, 4, 8, or 16 samples have been accumulated by a hardware accumulator. The resulting 12-bit to 16 -bit data word is latched into the ADC data SFRs upon completion of a conversion. When the system clock is slow, Burst Mode allows ADC0 to automatically wake from a low power shutdown state, acquire and accumulate samples, then re-enter the low power shutdown state without CPU intervention.

Window compare registers for the ADC data can be configured to interrupt the controller when ADC data is either within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within/outside the specified range.

Figure 1.7. 12-Bit ADC Block Diagram

C8051F52x/F52xA/F53x/F53xA

1.5. Programmable Comparator

C8051F52x/52xA/53x/53xA devices include a software-configurable voltage comparator with an input multiplexer. The comparator offers programmable response time and hysteresis and an output that is optionally available at the Port pins: a synchronous "latched" output (CPO). The comparator interrupt may be generated on rising, falling, or both edges. When in IDLE or SUSPEND mode, these interrupts may be used as a "wake-up" source for the processor. The Comparator may also be configured as a reset source. A block diagram of the comparator is shown in Figure 1.8.

Figure 1.8. Comparator Block Diagram

1.6. Voltage Regulator

C8051F52x/52xA/53x/53xA devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the $\mathrm{V}_{\text {REGIN }}$ pin can be as high as 5.25 V . The output can be selected by software to 2.1 or 2.6 V . When enabled, the output of REG0 powers the device and drives the V_{DD} pin. The voltage regulator can be used to power external devices connected to V_{DD}.

1.7. Serial Port

The C8051F52x/52xA/53x/53xA family includes a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

C8051F52x/F52xA/F53x/F53xA

1.8. Port Input/Output

C8051F52x/52xA/53x/53xA devices include up to 16 I/O pins. Port pins are organized as two byte-wide ports. The port pins behave like typical 8051 ports with a few enhancements. Each port pin can be configured as a digital or analog I/O pin. Pins selected as digital I/O can be configured for push-pull or open-drain operation. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled to save power.

The Digital Crossbar allows mapping of internal digital system resources to port I/O pins. On-chip counter/timers, serial buses, hardware interrupts, and other digital signals can be configured to appear on the port pins using the Crossbar control registers. This allows the user to select the exact mix of general-purpose port I/O, digital, and analog resources needed for the application.

Figure 1.9. Port I/O Functional Block Diagram

C8051F52x/F52xA/F53x/F53xA
2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Typ	Max	Units
Ambient temperature under bias		-55	-	135	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	-	150	${ }^{\circ} \mathrm{C}$
Voltage on $\mathrm{V}_{\text {REGIN }}$ with respect to GND		-0.3	-	5.5	V
Voltage on $\mathrm{V}_{\text {DD }}$ with respect to GND		-0.3	-	2.8	V
Voltage on XTAL1 with respect to GND		-0.3	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Voltage on XTAL2 with respect to GND		-0.3	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Voltage on any Port I/O Pin or RST with respect to GND		-0.3	-	$\mathrm{V}_{\text {REGIN }}+0.3$	V
Maximum output current sunk by any Port pin		-	-	100	mA
Maximum output current sourced by any Port pin		-	-	100	mA
Maximum Total current through $\mathrm{V}_{\text {REGIN, }}$, and GND		-	-	500	mA

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

C8051F52x/F52xA/F53x/F53xA

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics
-40 to $+125^{\circ} \mathrm{C}, 25 \mathrm{MHz}$ System Clock unless otherwise specified. Typical values are given at $25^{\circ} \mathrm{C}$

Parameter	Conditions	Min.	Typ.	Max.	Units
Supply Input Voltage ($\left.\mathrm{V}_{\text {REGIN }}\right)^{1}$	Output Current $=1 \mathrm{~mA}$ C8051F52x/53x C8051F52xA/53xA	$\begin{gathered} 2.7 \\ 1.8^{1} \end{gathered}$	-	$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Digital Supply Voltage (V_{DD})	$\begin{aligned} & \text { C8051F52x/53x } \\ & \text { C8051F52xA/53xA } \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.8 \end{aligned}$	-	$\begin{aligned} & 2.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Core Supply RAM Data Retention Voltage		-	1.5	-	V
SYSCLK (System Clock) ${ }^{2}$		0	-	25	MHz
Specified Operating Temperature Range		-40	-	+125	${ }^{\circ} \mathrm{C}$
Digital Supply Current-CPU Active (Normal Mode, fetching instructions from Flash)					
IDD^{3}		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 13 \\ 40 \\ 0.25 \\ 9 \\ \\ 21 \\ 100 \\ 0.45 \\ 11 \end{gathered}$	- - - -	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
${ }^{\text {DD }}$ Supply Sensitivity ${ }^{3}$	$\begin{aligned} & \mathrm{F}=25 \mathrm{MHz} \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$	-	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
${ }_{\text {DD }}$ Frequency Sensitivity ${ }^{3,4}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}: \\ & \mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}<=15 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}>15 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~F}<=15 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~F}>15 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	-	$\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$

Notes:

1. For more information on $\mathrm{V}_{\text {REGIN }}$ characteristics, see Table 7.1 on page 71.
2. SYSCLK must be at least 32 kHz to enable debugging.
3. Based on device characterization data; Not production tested.
4. I_{DD} can be estimated for frequencies $<=15 \mathrm{MHz}$ by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbesr to estimate $\mathrm{I}_{\mathrm{DD}}>15 \mathrm{MHz}$, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{I}_{\mathrm{DD}}=11 \mathrm{~mA}-(25 \mathrm{MHz}-20 \mathrm{MHz})$ * $\mathrm{TBD} \mathrm{mA} / \mathrm{MHz}=\mathrm{TBD} \mathrm{mA}$.
5. Idle I_{DD} can be estimated for frequencies $<=1 \mathrm{MHz}$ by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbesr to estimate $\mathrm{I}_{\mathrm{DD}}>1 \mathrm{MHz}$, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle $\mathrm{I}_{\mathrm{DD}}=4 \mathrm{~mA}-(25 \mathrm{MHz}-5 \mathrm{MHz})$ * $\mathrm{TBD} \mathrm{mA} / \mathrm{MHz}=\mathrm{TBD} \mathrm{mA}$.

C8051F52x/F52xA/F53x/F53xA

Table 3.1. Global DC Electrical Characteristics
-40 to $+125^{\circ} \mathrm{C}, 25 \mathrm{MHz}$ System Clock unless otherwise specified. Typical values are given at $25^{\circ} \mathrm{C}$

Parameter	Conditions	Min.	Typ.	Max.	Units
Digital Supply Current-CPU Inactive (Idle Mode, not fetching instructions from Flash)					
Idle IDD^{3}	```VDD}=2.1 V Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz V Clock = 32 kHz Clock = 200 kHz Clock = 1 MHz Clock = 25 MHz```	- - - - - -	$\begin{gathered} 10 \\ 22 \\ 0.15 \\ 3 \\ \\ 15 \\ 34 \\ 0.23 \\ 4 \end{gathered}$	- - - - -	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
Idle I_{DD} Supply Sensitivity ${ }^{3}$	$\begin{aligned} & \mathrm{F}=25 \mathrm{MHz} \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$	-	$\begin{aligned} & \hline \% / V \\ & \% / V \end{aligned}$
Idle $I_{\text {DD }}$ Frequency Sensitivity ${ }^{3,5}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}: \\ & \mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}<=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}>1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~F}<=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~F}>1 \mathrm{MHz} \end{aligned}$	-	TBD TBD TBD TBD	—	$\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$ $\mathrm{mA} / \mathrm{MHz}$
Digital Supply Current (Suspend Mode) ${ }^{2}$	Oscillator not running, $V_{\text {DD }}$ Monitor Disabled	-	2	-	$\mu \mathrm{A}$
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, $V_{\text {DD }}$ Monitor Disabled	-	2	-	$\mu \mathrm{A}$
Notes: 1. For more information on $\mathrm{V}_{\mathrm{REGIN}}$ characteristics, see Table 7.1 on page 71. 2. SYSCLK must be at least 32 kHz to enable debugging. 3. Based on device characterization data; Not production tested. 4. I_{DD} can be estimated for frequencies $<=15 \mathrm{MHz}$ by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbesr to estimate $\mathrm{I}_{\mathrm{DD}}>15 \mathrm{MHz}$, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{I}_{\mathrm{DD}}=11 \mathrm{~mA}-(25 \mathrm{MHz}-20 \mathrm{MHz}) * \mathrm{TBD} \mathrm{mA} / \mathrm{MHz}=\mathrm{TBD} \mathrm{mA}$. 5. Idle I_{DD} can be estimated for frequencies $<=1 \mathrm{MHz}$ by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbesr to estimate $\mathrm{I}_{\mathrm{DD}}>1 \mathrm{MHz}$, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle $\mathrm{I}_{\mathrm{DD}}=4 \mathrm{~mA}-(25 \mathrm{MHz}-5 \mathrm{MHz})$ * $\mathrm{TBD} \mathrm{mA} / \mathrm{MHz}=\mathrm{TBD} \mathrm{mA}$.					

C8051F52x/F52xA/F53x/F53xA

4. Pinout and Package Definitions

Table 4.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10)

Name	Pin Numbers		Type	Description
	'F52xA	'F52x		

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

Table 4.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10) (Continued)

Name	Pin Numbers		Type	Description
	'F52xA	'F52x		
$\begin{aligned} & \text { PO.O/ } \\ & \mathrm{V}_{\mathrm{REF}} \end{aligned}$	2	2	D I/O or A In A O or D In	Port 0.0. See Port I/O Section for a complete description. External $\mathrm{V}_{\text {REF }}$ Input. See $\mathrm{V}_{\text {REF }}$ Section.
GND	3	3		Ground.
$V_{\text {DD }}$	4	4		Core Supply Voltage.
$\mathrm{V}_{\text {REGIN }}$	5	5		On-Chip Voltage Regulator Input.
P0.5/RX*/ CNVSTR	6	-	$\begin{gathered} \text { D I/O or } \\ \text { A In } \\ \text { D In } \end{gathered}$	Port 0.5. See Port I/O Section for a complete description. External Converter start input for the ADC0, see Section " 5 . 12-Bit ADC (ADC0)" on page 47 for a complete description.
P0.5/ CNVSTR	-	6	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \\ \text { D in } \end{gathered}$	Port 0.5. See Port I/O Section for a complete description. External Converter start input for the ADC0, see Section " 5 . 12-Bit ADC (ADC0)" on page 47 for a complete description.
P0.4/TX*	7	-	$\begin{gathered} \hline \mathrm{D} \text { I/O or } \\ \mathrm{A} \text { In } \end{gathered}$	Port 0.4. See Port I/O Section for a complete description.
P0.4/RX*	-	7	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 0.4. See Port I/O Section for a complete description.
$\begin{gathered} \text { P0.3 } \\ \text { XTAL2 } \end{gathered}$	8	-	$\begin{gathered} \text { D I/O or } \\ \text { A In } \\ \text { D I/O } \end{gathered}$	Port 0.3. See Port I/O Section for a complete description. External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "15. Oscillators" on page 135.
P0.3/TX*/ XTAL2	-	8	$\begin{gathered} \text { D I/O or } \\ \text { A In } \\ \text { D I/O } \end{gathered}$	Port 0.3. See Port I/O Section for a complete description. External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. See Section "15. Oscillators" on page 135.

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Table 4.1. Pin Definitions for the C8051F52x and C8051F52xA (DFN 10) (Continued)

Name	Pin Numbers		Type	Description
	'F52xA	'F52x		
P0.2	9	9	D I/O or	Port 0.2. See Port I/O Section for a complete description.
XTAL1			A In	External Clock Input. This pin is the external oscillator return for a crystal or resonator. Section "15. Oscillators" on page 135.
P0.1/	10	10	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 0.1. See Port I/O Section for a complete description.Bi-directional data signal for the C2 Debug Interface
C2D			D I/O	

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Figure 4.1. DFN-10 Package Diagram*
*Note: The Package Dimensions are given in Table 4.2, "DFN-10 Package Diagram Dimensions," on page 34.

Table 4.2. DFN-10 Package Diagram Dimensions

Dimension	Min	Nom	Max
A	0.80	0.90	1.00
A1	0.03	0.07	0.11
b	0.18	0.25	0.30
D	3.00 BSC.		
D2	1.50	1.65	1.80
e	0.50 BSC.		
E	3.00 BSC.		
E2	2.23	2.38	2.53
L	0.30	0.40	0.50
L1	0.00	-	0.15
aaa	-	-	0.15
bbb	-	-	0.15
ddd	-	-	0.05
eee	-	-	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-243, variation VEED except for custom features D2, E2, L, and L1, which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

C8051F52x/F52xA/F53x/F53xA

Figure 4.2. DFN-10 Landing Diagram

Table 4.3. DFN-10 Landing Diagram Dimensions

Dimension	Min	Max
C1	2.90	3.00
E	0.50 BSC.	
X 1	0.20	0.30
X 2	1.70	1.80
Y 1	0.70	0.80
Y 2	2.45	2.55

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on the IPC-7351 guidelines.

Table 4.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20)

Name	Pin Numbers		Type	Description
	'F53xA	'F53x		
P0.2	1	1	$\begin{gathered} \mathrm{D} \text { I/O or } \\ \mathrm{A} \text { In } \end{gathered}$	Port 0.2. See Port I/O Section for a complete description.
P0.1	2	2	$\begin{aligned} & \text { D I/O or } \\ & \text { A In } \end{aligned}$	Port 0.1. See Port I/O Section for a complete description.
$\overline{\mathrm{RST}} /$ C2CK	3	3	D I/O D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least $15 \mu \mathrm{~s}$. A $1 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{\text {REGIN }}$ is recommended. See Reset Sources Section for a complete description. Clock signal for the C2 Debug Interface.
$\begin{aligned} & \hline \text { P0.0/ } \\ & \mathrm{V}_{\text {REF }} \end{aligned}$	4	4	$\begin{gathered} \mathrm{D} \text { I/O or } \\ \mathrm{A} \text { In } \\ \text { A o or } \\ \mathrm{D} \text { In } \end{gathered}$	Port 0.0. See Port I/O Section for a complete description. External $\mathrm{V}_{\text {REF }}$ Input. See $\mathrm{V}_{\text {REF }}$ Section.
GND	5	5		Ground.
$V_{\text {DD }}$	6	6		Core Supply Voltage.
$\mathrm{V}_{\text {REGIN }}$	7	7		On-Chip Voltage Regulator Input.
P1.7	8	8	$\begin{array}{\|c} \hline \mathrm{D} \mathrm{I/O} \text { or } \\ \mathrm{A} \text { In } \end{array}$	Port 1.7. See Port I/O Section for a complete description.

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Table 4.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20)

Name	Pin Numbers		Type	Description
P1.6	9	9	D I/O or A In	Port 1.6. See Port I/O Section for a complete description.
P1.5	10	10	D I/O or A In	Port 1.5. See Port I/O Section for a complete description.
P1.4	11	11	D I/O or A In	Port 1.4. See Port I/O Section for a complete description.
P1.3	12	12	D I/O or A In	Port 1.3. See Port I/O Section for a complete description.
P1.2/		D I/O or A In D In	Port 1.2. See Port I/O Section for a complete description.	
CNVSTR	13	13	External Converter start input for the ADC0, see Section "5. 12-Bit	

| P1.1 | 14 | 14 | D I/O or
 A In | Port 1.1. See Port I/O Section for a complete description. |
| :---: | :---: | :---: | :---: | :--- | :--- |
| PTAL2 | 15 | 15 | D I/O or
 A In
 D I/O | Port 1.0. See Port I/O Section for a complete description.
 External Clock Output. For an external crystal or resonator, this
 pin is the excitation driver. This pin is the external clock input for
 CMOS, capacitor, or RC oscillator configurations. See Section
 "15. Oscillators" on page 135. |
| P0.7/ | 16 | 16 | D I/O or
 A In
 A In | Port 0.7. See Port I/O Section for a complete description.
 External Clock Input. This pin is the external oscillator return for a
 crystal or resonator. Section "15. Oscillators" on page 135. |
| XTAL1 | 17 | 17 | D I/O or
 A In
 D I/O | Port 0.6. See Port I/O Section for a complete description. |
| P0.6/-directional data signal for the C2 Debug Interface. | | | | |
| C2D | 18 | - | D I/O or
 A In | Port 0.5. See Port I/O Section for a complete description. |
| P0.5/RX* | 18 | D I/O or
 A In | Port 0.5. See Port I/O Section for a complete description. | |
| P0.5 | - | - | D I/O or
 A In | Port 0.4. See Port I/O Section for a complete description. |
| P0.4/TX* | 19 | D I/O or
 A In | Port 0.4. See Port I/O Section for a complete description. | |
| P0.4/RX* | - | 19 | | |

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Table 4.4. Pin Definitions for the C8051F53x and C805153xA (TSSOP 20)

Name	Pin Num	nbers	Type	Description
	'F53xA	'F53x		
P0.3	20	-	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.3/TX*	-	20	$\begin{gathered} \hline \mathrm{D} \text { I/O or } \\ \mathrm{A} \text { In } \end{gathered}$	Port 0.3. See Port I/O Section for a complete description.

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Figure 4.3. TSSOP-20 Package Diagram

Table 4.5. TSSOP-20 Package Diagram Dimensions

Symbol	Min	Nom	Max	
A	-	-	1.20	
A1	0.05	-	0.15	
A2	0.80	1.00	1.05	
b	0.19	-	0.30	
c	0.09	-	0.20	
D	6.40	6.50	6.60	
e	0.65 BSC.			
E	4.30	6.40 BSC.		
E1	0.45	4.40		
L	0°	0.60	4.50	
$\theta 1$				
bbb				
ddd	0.10	8°		

Notes:

1. All dimensions shown are in millimeters (mm).
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-153, variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

C8051F52x/F52xA/F53x/F53xA

Figure 4.4. TSSOP-20 Landing Diagram

Table 4.6. TSSOP-20 Landing Diagram Dimensions

Symbol	Min	Max
C	5.80	5.90
E	0.65 BSC.$$	
X1	0.35	0.45
Y1	1.35	1.45

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on the IPC7351 guidelines.

C8051F52x/F52xA/F53x/F53xA

C8051F52x/F52xA/F53x/F53xA

Table 4.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20)

Name	Pin Numbers		Type	Description
	'F53xA	'F53x		
$\overline{\mathrm{RST}} /$ C2CK	1	1	D I/O D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least $15 \mu \mathrm{~s}$. A $1 \mathrm{k} \Omega$ pullup to $\mathrm{V}_{\text {REGIN }}$ is recommended. See Reset Sources Section for a complete description. Clock signal for the C2 Debug Interface.
$\begin{aligned} & \text { PO.O/ } \\ & \mathrm{V}_{\text {REF }} \end{aligned}$	2	2	D I/O or A In A O or D In	Port 0.0. See Port I/O Section for a complete description. External $\mathrm{V}_{\text {REF }}$ Input. See $\mathrm{V}_{\text {REF }}$ Section.
GND	3	3		Ground.
$\mathrm{V}_{\text {DD }}$	4	4		Core Supply Voltage.
$\mathrm{V}_{\text {REGIN }}$	5	5		On-Chip Voltage Regulator Input.
P1.7	6	6	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 1.7. See Port I/O Section for a complete description.
P1.6	7	7	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 1.6. See Port I/O Section for a complete description.
P1.5	8	8	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 1.5. See Port I/O Section for a complete description.
P1.4	9	9	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 1.4. See Port I/O Section for a complete description.
P1.3	10	10	$\begin{aligned} & \text { D I/O or } \\ & \text { A In } \end{aligned}$	Port 1.3. See Port I/O Section for a complete description.
P1.2/ CNVSTR	11	11	D I/O or A In D In	Port 1.2. See Port I/O Section for a complete description. External Converter start input for the ADC0, see Section " 5 . 12-Bit ADC (ADC0)" on page 47 for a complete description.
P1.1	12	12	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 1.1. See Port I/O Section for a complete description.
$\begin{aligned} & \text { P1.0/ } \\ & \text { XTAL2 } \end{aligned}$	13	13	$\begin{gathered} \text { D I/O or } \\ \text { A In } \\ \text { D I/O } \end{gathered}$	Port 1.0. See Port I/O Section for a complete description. External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations. Section "15. Oscillators" on page 135.

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Table 4.7. Pin Definitions for the C8051F53x and C805153xA (QFN 20) (Continued)

Name	Pin Numbers		Type	Description
	'F53xA	'F53x		
$\begin{aligned} & \hline \text { P0.7/ } \\ & \text { XTAL1 } \end{aligned}$	14	14	D I/O or A In	Port 0.7. See Port I/O Section for a complete description. External Clock Input. This pin is the external oscillator return for a crystal or resonator. See Oscillator Section.
$\begin{aligned} & \text { P0.6/ } \\ & \text { C2D } \end{aligned}$	15	15	$\begin{gathered} \text { D I/O or } \\ \text { A In } \\ \text { D I/O } \end{gathered}$	Port 0.6. See Port I/O Section for a complete description. Bi-directional data signal for the C2 Debug Interface.
P0.5/RX*	16	-	$\begin{gathered} \text { D I/O or } \\ \text { A } \mathrm{ln} \end{gathered}$	Port 0.5. See Port I/O Section for a complete description.
P0.5	-	16	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 0.5. See Port I/O Section for a complete description.
P0.4/TX*	17	-	$\begin{gathered} \text { D I/O or } \\ \text { A in } \end{gathered}$	Port 0.4. See Port I/O Section for a complete description.
P0.4/RX*	-	17	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 0.4. See Port I/O Section for a complete description.
P0.3	18	-	D I/O or A In	Port 0.3. See Port I/O Section for a complete description.
P0.3/TX*	-	18	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 0.3. See Port I/O Section for a complete description.
P0.2	19	19	$\begin{gathered} \text { D I/O or } \\ \text { A In } \end{gathered}$	Port 0.2. See Port I/O Section for a complete description.
P0.1	20	20	$\begin{gathered} \text { D I/O or } \\ \text { A ln } \end{gathered}$	Port 0.1. See Port I/O Section for a complete description.

*Note: Please refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Figure 4.5. QFN-20 Package Diagram*
*Note: The Package Dimensions are given in Table 4.8, "QFN-20 Package Diagram Dimensions," on page 45.

Table 4.8. QFN-20 Package Diagram Dimensions

Dimension	MIN	NOM	MAX		
A	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D	4.00 BSC.				
D2	2.55	2.70	2.85		
e	0.50 BSC.				
E	4.00 BSC.				
E2	2.55	2.70	2.85		
L	0.30	0.40	0.50		
L1	0.00	--	0.15		
aaa	--	--	0.15		
bbb	--	--	0.10		
ddd	--	--	0.05		
eee	--	0.43	--		
Z	--	0.18	--		
Y					

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VGGD except for custom features D2, E2, Z, Y, L, and L1, which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

C8051F52x/F52xA/F53x/F53xA

Figure 4.6. QFN-20 Landing Diagram

Table 4.9. QFN-20 Landing Diagram Dimensions

Symbol	Min	Max
C1	3.90	4.00
E	0.50 BSC.	
X1	0.20	0.30
X2	2.75	2.85
Y1	0.65	0.75
Y2	2.75	2.85

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This land pattern design is based on the IPC7351 guidelines.

C8051F52x/F52xA/F53x/F5

5. 12-Bit ADC (ADC0)

The ADC0 on the C8051F52x/F52xA/F53x/F53xA Family consists of an analog multiplexer (AMUX0) with $16 / 6$ total input selections, and a 200 ksps , 12-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, programmable window detector, programmable gain, and hardware accumulator. The ADCO subsystem has a special Burst Mode which can automatically enable ADCO, capture and accumulate samples, then place ADCO in a low power shutdown mode without CPU intervention. The AMUXO, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADC0 inputs are single-ended and may be configured to measure P0.0-P1.7, the Temperature Sensor output, V_{DD}, or GND with respect to GND. The voltage reference for the ADC is selected as described in Section " 6 . Voltage Reference" on page 67. ADC0 is enabled when the ADOEN bit in the ADC0 Control register (ADCOCN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when ADOEN is logic 0 and no Burst Mode conversions are taking place.

Figure 5.1. ADCO Functional Block Diagram

5.1. Analog Multiplexer

AMUXO selects the input channel to the ADC. Any of the following may be selected as an input: P0.0-P1.7, the on-chip temperature sensor, the core power supply ($V_{D D}$), or ground (GND). ADC0 is sin-gle-ended and all signals measured are with respect to GND. The ADCO input channels are selected using the ADCOMX register as described in SFR Definition 5.4.

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to ' 0 ' the corresponding bit in register PnMDIN (for $\mathrm{n}=0,1$). To force the Crossbar to skip a Port pin, set to ' 1 ' the corresponding bit in register PnSKIP (for $n=0,1$). See Section "14. Port Input/Output" on page 118 for more Port I/O configuration details.

C8051F52x/F52xA/F53x/F5

5.2. Temperature Sensor

An on-chip temperature sensor is included on the C8051F52x/F52xA/F53x/F53xA devices which can be directly accessed via the ADCO multiplexer. To use ADCO to measure the temperature sensor, the ADC multiplexer channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 5.2. The output voltage ($\mathrm{V}_{\text {TEMP }}$) is the positive ADC input selected by bits ADOMX[4:0] in register ADCOMX. The TEMPE bit in register REFOCN enables/disables the temperature sensor, as described in SFR Definition 6.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.1 for the slope and offset parameters of the temperature sensor.

Temperature
Figure 5.2. Typical Temperature Sensor Transfer Function

C8051F52x/F52xA/F53x/F5

5.3. ADCO Operation

In a typical system, ADCO is configured using the following steps:
Step 1. If a gain adjustment is required, refer to Section "5.4. Selectable Gain" on page 54.
Step 2. Choose the start of conversion source.
Step 3. Choose Normal Mode or Burst Mode operation.
Step 4. If Burst Mode, choose the ADCO Idle Power State and set the Power-Up Time.
Step 5. Choose the tracking mode. Note that Pre-Tracking Mode can only be used with Normal Mode.
Step 6. Calculate required settling time and set the post convert-start tracking time using the ADOTK bits.
Step 7. Choose the repeat count.
Step 8. Choose the output word justification (Right-Justified or Left-Justified).
Step 9. Enable or disable the End of Conversion and Window Comparator Interrupts.

5.3.1. Starting a Conversion

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (ADOCM1-0) in register ADCOCN. Conversions may be initiated by one of the following:
-Writing a ' 1 ' to the ADOBUSY bit of register ADCOCN
-A rising edge on the CNVSTR input signal (pin P0.6)
-A Timer 1 overflow (i.e., timed continuous conversions)
-A Timer 2 overflow (i.e., timed continuous conversions)
Writing a ' 1 ' to ADOBUSY provides software control of ADC0 whereby conversions are performed "ondemand." During conversion, the ADOBUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of ADOBUSY triggers an interrupt (when enabled) and sets the ADCO interrupt flag (ADOINT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (ADOINT) should be used. Converted data is available in the ADCO data registers, ADCOH:ADCOL, when bit ADOINT is logic 1. Note that when Timer 2 overflows are used as the conversion source, Low Byte overflows are used if Timer2 is in 8 -bit mode; High byte overflows are used if Timer 2 is in 16 -bit mode. See Section "19. Timers" on page 184 for timer configuration.

Important Note: The CNVSTR input pin also functions as Port pin P0.5 on C8051F52x/52xA devices and P1.2 on C8051F53x/53xA devices. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.5 or P1.2 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.5 or P1.2, set to ' 1 ' to the appropriate bit in the PnSKIP register. See Section X on Page \# for details on Port I/O configuration.

5.3.2. Tracking Modes

Each ADCO conversion must be preceded by a minimum tracking time for the converted result to be accurate, as shown in Table 5.1. ADC0 has three tracking modes: Pre-Tracking, Post-Tracking, and DualTracking. Pre-Tracking Mode provides the minimum delay between the convert start signal and end of conversion by tracking continuously before the convert start signal. This mode requires software management in order to meet minimum tracking requirements. In Post-Tracking Mode, a programmable tracking time starts after the convert start signal and is managed by hardware. Dual-Tracking Mode maximizes tracking time by tracking before and after the convert start signal. Figure 5.3 shows examples of the three tracking modes.

C8051F52x/F52xA/F53x/F5

Pre-Tracking Mode is selected when ADOTM is set to 10b. Conversions are started immediately following the convert start signal. ADC0 is tracking continuously when not performing a conversion. Software must allow at least the minimum tracking time between each end of conversion and the next convert start signal. The minimum tracking time must also be met prior to the first convert start signal after ADCO is enabled.

Post-Tracking Mode is selected when ADOTM is set to 01b. A programmable tracking time based on ADOTK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADCO does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

Dual-Tracking Mode is selected when ADOTM is set to 11b. A programmable tracking time based on ADOTK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADC0 tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 5.1, may be required after changing MUX settings. See the settling time requirements described in Section "5.3.6. Settling Time Requirements" on page 54.

Figure 5.3. ADCO Tracking Modes

5.3.3. Timing

ADC0 has a maximum conversion speed specified in Table 5.1. ADC0 is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0 , FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, an independent clock source with a maximum frequency of 25 MHz .

When ADCO is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADCO SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the ADOSC bits in the ADCOCF register. The maximum SAR clock frequency is listed in Table 5.1.

ADCO can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADC0 starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the ADOTK bits plus 2

C8051F52x/F52xA/F53x/F5

FCLK cycles. Tracking is immediately followed by a conversion. The ADC0 conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 5.4 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

Key
F Equal to one period of FCLK.
$\mathrm{Sn} \quad$ Each Sn is equal to one period of the SAR clock.
Figure 5.4. 12-Bit ADC Tracking Mode Example

C8051F52x/F52xA/F53x/F5

5.3.4. Burst Mode

Burst Mode is a power saving feature that allows ADCO to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates $1,4,8$, or 16 samples using an internal Burst Mode clock (approximately 25 MHz), then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADCO can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g. 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, ADOEN controls the ADC0 idle power state (i.e. the state ADCO enters when not tracking or performing conversions). If ADOEN is set to logic $0, A D C O$ is powered down after each burst. If ADOEN is set to logic $1, A D C O$ remains enabled after each burst. On each convert start signal, ADCO is awakened from its Idle Power State. If ADCO is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the ADOPWR bits. Otherwise, ADC0 will start tracking and converting immediately. Figure 5.5 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4 .

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.
When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADCO End of Conversion Interrupt Flag (ADOINT) will be set after "repeat count" conversions have been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.

$\mathrm{T}=$ Tracking
$\mathrm{C}=$ Converting

Figure 5.5. 12-Bit ADC Burst Mode Example with Repeat Count Set to 4

C8051F52x/F52xA/F53x/F5

5.3.5. Output Conversion Code

The registers ADCOH and ADCOL contain the high and low bytes of the output conversion code. When the repeat count is set to 1 , conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from '0' to $\mathrm{V}_{\text {REF }} \times 4095 / 4096$. Data can be right-justified or left-justified, depending on the setting of the ADOLJST bit (ADCOCN.2). Unused bits in the ADCOH and ADCOL registers are set to ' 0 '. Example codes are shown below for both right-justified and left-justified data.

Input Voltage	Right-Justified ADCOH:ADCOL (ADOLJST = 0)	Left-Justified ADCOH:ADCOL (ADOLJST = 1)
$\mathrm{V}_{\text {REF }} \times 4095 / 4096$	$0 \times 0 \mathrm{FFF}$	$0 \times F F F 0$
$\mathrm{~V}_{\text {REF }} \times 2048 / 4096$	0×0800	0×8000
$\mathrm{~V}_{\text {REF }} \times 2047 / 4096$	$0 \times 07 \mathrm{FF}$	$0 \times 7 \mathrm{FFO}$
0	0×0000	0×0000

When the ADCO Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4,8 , or 16 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the ADORPT bits in the ADCOCF register. The value must be rightjustified (ADOLJST = "0"), and unused bits in the ADCOH and ADCOL registers are set to ' 0 '. The following example shows right-justified codes for repeat counts greater than 1 . Notice that accumulating 2^{n} samples is equivalent to left-shifting by n bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count = 16
$\mathrm{V}_{\text {REF }} \times 4095 / 4096$	0×3 FFC	$0 \times 7 \mathrm{FF8}$	$0 \times$ FFFO
$\mathrm{V}_{\text {REF }} \times 2048 / 4096$	0×2000	0×4000	0×8000
$\mathrm{~V}_{\text {REF }} \times 2047 / 4096$	$0 \times 1 \mathrm{FFC}$	$0 \times 3 F F 8$	$0 \times 7 \mathrm{FFO}$
0	0×0000	0×0000	0×0000

C8051F52x/F52xA/F53x/F5

5.3.6. Settling Time Requirements

A minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUXO resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion.

Figure 5.6 shows the equivalent $A D C 0$ input circuit. The required $A D C 0$ settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. See Table 5.1 for ADC0 minimum settling time requirements.

$$
t=\ln \left(\frac{2^{n}}{S A}\right) \times R_{\text {TOTAL }} C_{S A M P L E}
$$

Equation 5.1. ADC0 Settling Time Requirements

Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within $1 / 4$ LSB)
t is the required settling time in seconds
$R_{\text {TOTAL }}$ is the sum of the AMUXO resistance and any external source resistance.
n is the ADC resolution in bits (12).

Figure 5.6. ADCO Equivalent Input Circuits

5.4. Selectable Gain

ADC0 on the C8051F52x/52xA/53x/53xA family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.

For example, three analog sources to be measured have full-scale outputs of $5.0 \mathrm{~V}, 4.0 \mathrm{~V}$, and 3.0 V , respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting signal one (5.0 V fullscale), a gain value of 0.44 (5 V full scale * $0.44=2.2 \mathrm{~V}$ full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V . Likewise, a gain value of 0.55 (4 V full scale * $0.55=2.2 \mathrm{~V}$ full scale) for the second source and 0.73 (3 V full scale * $0.73=2.2 \mathrm{~V}$ full scale) for the third source provide full-scale ADC0 measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

C8051F52x/F52xA/F53x/F5

5.4.1. Calculating the Gain Value

The ADCO selectable gain feature is controlled by 13 bits in three registers. ADCOGNH contains the 8 upper bits of the gain value and ADCOGNL contains the 4 lower bits of the gain value. The final GAINADD bit (ADCOGNA.O) controls an optional extra $1 / 64$ (0.016) of gain that can be added in addition to the ADCOGNH and ADCOGNL gain. The ADCOGNA. 0 bit is set to ' 1 ' after a power-on reset.

The equivalent gain for the ADCOGNH, ADC0GNL and ADC0GNA registers is:

$$
\text { gain }=\left(\frac{G A I N}{4096}\right)+G A I N A D D \times\left(\frac{1}{64}\right)
$$

Equation 5.2. Equivalent Gain from the ADC0GNH and ADCOGNL Registers

Where:
GAIN is the 12-bit word of ADCOGNH[7:0] and ADC0GNL[7:4]
GAINADD is the value of the GAINADD bit (ADCOGNA.0)
gain is the equivalent gain value from 0 to 1.016
For example, if ADCOGNH $=0 x F C$, ADCOGNL $=0 \times 00$, and GAINADD $=' 1$ ', GAIN $=0 x F C 0=4032$, and the resulting equation is:

$$
\text { gain }=\left(\frac{4032}{4096}\right)+1 \times\left(\frac{1}{64}\right)=0.984+0.016=1.0
$$

The table below equates values in the ADCOGNH, ADCOGNL, and ADCOGNA registers to the equivalent gain using this equation.

ADC0GNH Value	ADC0GNL Value	GAINADD Value	GAIN Value	Equivalent Gain
0xFC (default)	0x00 (default)	1 (default)	$4032+64$	1.0 (default)
0x7C	0×00	1	$1984+64$	0.5
0xBC	0×00	1	$3008+64$	0.75
0x3C	0x00	1	$960+64$	0.25
0xFF	0xF0	0	$4095+0$	~ 1.0
0xFC	0xF0	1	$4096+64$	1.016

For any desired gain value, the GAIN registers can be calculated by:

$$
\text { GAIN }=\left(\text { gain }- \text { GAINADD } \times\left(\frac{1}{64}\right)\right) \times 4096
$$

Equation 5.3. Calculating the ADC0GNH and ADC0GNL Values from the Desired Gain

C8051F52x/F52xA/F53x/F5

Where:
GAIN is the 12-bit word of ADC0GNH[7:0] and ADCOGNL[7:4]
GAINADD is the value of the GAINADD bit (ADCOGNA.0)
gain is the equivalent gain value from 0 to 1.016
When calculating the value of GAIN to load into the ADCOGNH and ADCOGNL registers, the GAINADD bit can be turned on or off to reach a value closer to the desired gain value.

For example, the initial example in this section requires a gain of 0.44 to convert 5 V full scale to 2.2 V full scale. Using Equation 5.3:

$$
G A I N=\left(0.44-G A I N A D D \times\left(\frac{1}{64}\right)\right) \times 4096
$$

If GAINADD is set to ' 1 ', this makes the equation:

$$
\text { GAIN }=\left(0.44-1 \times\left(\frac{1}{64}\right)\right) \times 4096=0.424 \times 4096=1738=0 \times 06 C A
$$

The actual gain from setting GAINADD to ' 1 ' and ADC0GNH and ADC0GNL to 0x6CA is 0.4399 . A similar gain can be achieved if GAINADD is set to ' 0 ' with a different value for ADCOGNH and ADC0GNL.

5.4.2. Setting the Gain Value

The three programmable gain registers are accessed indirectly using the ADCOH and ADCOL registers when the GAINEN bit (ADCOCF.0) bit is set. ADCOH acts as the address register, and ADCOL is the data register. The programmable gain registers can only be written to and cannot be read. See Gain Register Definition 5.1, Gain Register Definition 5.2, and Gain Register Definition 5.3 for more information.

The gain is programmed using the following steps:
Step 1. Set the GAINEN bit (ADCOCF.0)
Step 2. Load the ADCOH with the ADC0GNH, ADCOGNL, or ADC0GNA address.
Step 3. Load ADCOL with the desired value for the selected gain register.
Step 4. Reset the GAINEN bit (ADCOCF.0)

Notes:

1. An ADC conversion should not be performed while the GAINEN bit is set.
2. Even with gain enabled, the maximum input voltage must be less than $\mathrm{V}_{\text {REGIN }}$ and the maximum voltage of the signal after gain must be less than or equal to $\mathrm{V}_{\text {REF }}$.

In code, changing the value to 0.44 gain from the previous example looks like:

```
// in 'C':
ADC0CF |= 0x01; // GAINEN = '1'
ADCOH = 0x04; // Load the ADC0GNH address
ADC0L = 0x6C; // Load the upper byte of 0x6CA to ADC0GNH
ADCOH = 0x07; // Load the ADC0GNL address
ADC0L = 0xA0; // Load the lower nibble of 0x6CA to ADC0GNL
ADCOH = 0x08; // Load the ADC0GNA address
ADC0L = 0x01; // Set the GAINADD bit
```

C8051F52x/F52xA/F53x/F5

```
ADC0CF &= ~0x01; // GAINEN = '0'
; in assembly
ORL ADC0CF,#01H ; GAINEN = '1'
MOV ADC0H,#04H ; Load the ADC0GNH address
MOV ADC0L,#06CH ; Load the upper byte of 0x6CA to ADC0GNH
MOV ADC0H,#07H ; Load the ADC0GNL address
MOV ADC0L,#0A0H ; Load the lower nibble of 0x6CA to ADC0GNL
MOV ADC0H,#08H ; Load the ADC0GNA address
MOV ADC0L,#01H ; Set the GAINADD bit
ANL ADC0CF,#0FEH ; GAINEN = '0'
```

Gain Register Definition 5.1. ADC0GNH: ADC0 Selectable Gain High Byte

R/W	Reset Value							
			GAINH[7:0]				11111100	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Address:
								0×04

Bits7-0: High byte of Selectable Gain Word.

Gain Register Definition 5.2. ADCOGNL: ADC0 Selectable Gain Low Byte

R/W	Reset Value							
GAINL[3:0]				Reserved	Reserved	Reserved	Reserved	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Address: 0×07
$\begin{aligned} & \text { Bits7-4: } \\ & \text { Bits3-0: } \end{aligned}$	er 4	$\begin{aligned} & \text { the } S \\ & \text { st Wri } \end{aligned}$	00b.	Word.				

Gain Register Definition 5.3. ADC0GNA: ADCO Additional Selectable Gain

R/W	Reset Value							
Reserved	GAINADD	00000001						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Address: 0×08
Bits7-1: Bit0:	Reserved. GAINADD: Setting this registers.	Must Write Additional bit adds 1/64	0000000b. Gain Bit. 64 (0.016)	gain to the	gain value	in the ADC	OGNH and	ADCOGNL

C8051F52x/F52xA/F53x/F5

SFR Definition 5.4. ADCOMX: ADC0 Channel Select

R/W	Reset Value							
-	-	-	AD0MX					00011111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bits7-5: UNUSED. Read = 000b; Write = don't care.
Bits4-0: ADOMX4-0: AMUXO Positive Input Selection

ADOMX4-0	ADC0 Input Channel
00000	P 0.0
00001	P 0.1
00010	P 0.2
00011	P 0.3
00100	P 0.4
00101	P 0.5
00110	$\mathrm{P} 0.6^{\star}$
00111	$\mathrm{P} 0.7^{*}$
01000	$\mathrm{P} 1.0^{\star}$
01001	$\mathrm{P} 1.1^{\star}$
01010	$\mathrm{P} 1.2^{\star}$
01011	$\mathrm{P} 1.3^{\star}$
01100	$\mathrm{P} 1.4^{\star}$
01101	$\mathrm{P} 1.5^{*}$
01110	$\mathrm{P} 1.6^{*}$
01111	$\mathrm{P} 1.7^{*}$
11000	Temp Sensor
11001	$\mathrm{~V}_{\mathrm{DD}}$
$11010-11111$	GND

*Note: Only applies to C8051F53x/C8051F53xA parts.

C8051F52x/F52xA/F53x/F5

SFR Definition 5.5. ADC0CF: ADC0 Configuration

R/W	Reset Value							
		AD0SC			ADORPT	GAINEN	11111000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							0xBC	

Bits7-3: ADOSC4-0: ADC0 SAR Conversion Clock Period Bits.
SAR Conversion clock is derived from FCLK by the following equation, where ADOSC refers to the 5 -bit value held in bits ADOSC4-0. SAR Conversion clock requirements are given in Table 5.1.
BURSTEN = 0 : FCLK is the current system clock.
BURSTEN = 1: FCLK is a maximum of 25 MHz , independent of the current system clock.
$A D O S C=\frac{F C L K}{C L K_{S A R}}-1 * \quad$ or $\quad C L K_{S A R}=\frac{F C L K}{A D 0 S C+1}$
*Note: Round the result up.
Bits2-1: ADORPT1-0: ADC0 Repeat Count.
Controls the number of conversions taken and accumulated between ADCO End of Conversion (ADCINT) and ADCO Window Comparator (ADCWINT) interrupts. A convert start is required for each conversion unless Burst Mode is enabled. In Burst Mode, a single convert start can initiate multiple self-timed conversions. Results in both modes are accumulated in the ADCOH:ADCOL register. When ADORPT1-0 are set to a value other than ' 00 ', the ADOLJST bit in the ADCOCN register must be set to ' 0 ' (right justified).
00: 1 conversion is performed.
01: 4 conversions are performed and accumulated.
10: 8 conversions are performed and accumulated.
11: 16 conversions are performed and accumulated.
Bit0: GAINEN: Gain Enable Bit.
Controls the gain programming. For more information of the usage, refer to the following chapter: Section "5.4. Selectable Gain" on page 54.

SFR Definition 5.6. ADCOH: ADCO Data Word MSB

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times B E$

Bits7-0: ADC0 Data Word High-Order Bits.
For ADOLJST $=0$ and ADORPT as follows:
00: Bits 3-0 are the upper 4 bits of the 12-bit result. Bits 7-4 are 0000b.
01: Bits $4-0$ are the upper 5 bits of the 14 -bit result. Bits $7-5$ are 000b.
10: Bits 5-0 are the upper 6 bits of the 15-bit result. Bits $7-6$ are 00b.
11: Bits 7-0 are the upper 8 bits of the 16-bit result.
For ADOLJST = 1 (ADORPT must be '00'): Bits 7-0 are the most-significant bits of the ADC0 12-bit result.

SFR Definition 5.7. ADCOL: ADCO Data Word LSB

Bits7-0: ADC0 Data Word Low-Order Bits.
For ADOLJST = 0: Bits 7-0 are the lower 8 bits of the ADC0 Accumulated Result.
For ADOLJST = 1 (ADORPT must be 'O0'): Bits $7-4$ are the lower 4 bits of the 12 -bit result. Bits 3-0 are 0000b.

C8051F52x/F52xA/F53x/F5

SFR Definition 5.8. ADCOCN: ADCO Control

R/W	set Value							
ADOEN	BURSTEN	ADOINT	ADOBUSY	ADOWINT	ADOLJST	AD0CM1	ADOCM	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	$\begin{gathered} \text { Bit0 } \\ \text { addressab } \end{gathered}$	$\begin{aligned} & \text { SFR Address: } \\ & \text { 0xE8 } \end{aligned}$
Bit7:	ADOEN: ADCO Enable Bit. 0 : ADCO Disabled. ADCO is in low-power shutdown. 1: ADCO Enabled. ADCO is active and ready for data conversions.							
Bit6:	BURSTEN: ADCO Burst Mode Enable Bit. 0: ADCO Burst Mode Disabled. 1. ADCO Burst Mode Enabled							
Bit5:	ADOINT: ADCO Conversion Complete Interrupt Flag. 0 : ADCO has not completed a data conversion since the last time ADOINT was cleared. 1: ADCO has completed a data conversion.							
Bit4:	ADOBUSY: A Read: 0: ADC0 con to logic 1 on 1: ADC0 con Write: 0: No Effect. 1: Initiates $A D$	DC0 Bus version is the falling version is DCO Conv	Bit. complete or edge of ADO in progress. ersion if ADO	a conversio BUSY. $0 \mathrm{CM} 1-0=$	on is not cur 00b	rently in pro	gress. AD	OINT is set
Bit3:	ADOWINT: A This bit must 0: ADCO Win 1: ADCO Win	This bit must be cleared by software. 0: ADCO Window Comparison Data match has not occurred since this flag was last cleared.						
Bit2:	ADOLJST: AD 0: Data in AD 1: Data in AD repeat count	1: Data in ADCOH:ADCOL registers is left justified. This option should not be used with a repeat count greater than 1 (when ADORPT1-0 is 01b, 10b, or 11b).						d with a
Bits1-0:	AD0CM1-0: 00: ADCO co 01: ADC0 co 10: ADC0 co 11: ADC0 co	ADCO Sta version i version i version i version in	t of Convers itiated on ev itiated on ov itiated on ris itiated on ov	sion Mode very write o verflow of T ising edge of verflow of T	Select. f ' 1 ' to ADO Timer 1. oxternal imer 2.	USY. NVSTR.		

C8051F52x/F52xA/F53x/F5

SFR Definition 5.9. ADCOTK: ADCO Tracking Mode Select

Bits7-4: AD0PWR3-0: ADC0 Burst Power-Up Time.
For BURSTEN = 0:
ADC0 power state controlled by ADOEN.
For BURSTEN = 1 and ADOEN = 1;
ADC0 remains enabled and does not enter the very low power state.
For BURSTEN $=1$ and ADOEN $=0$:
ADC0 enters the very low power state as specified in Table 5.1 and is enabled after each convert start signal. The Power Up time is programmed according to the following equation:

$$
A D O P W R=\frac{\text { Tstartup }}{200 \mathrm{~ns}}-1 \text { or Tstartup }=(A D 0 P W R+1) 200 \mathrm{~ns}
$$

Bits3-2: AD0TM1-0: ADC0 Tracking Mode Select Bits.
00: Reserved.
01: ADC0 is configured to Post-Tracking Mode.
10: ADC0 is configured to Pre-Tracking Mode.
11: ADC0 is configured to Dual-Tracking Mode (default).
Bits1-0: AD0TK1-0: ADC0 Post-Track Time.
Post-Tracking time is controlled by ADOTK as follows:
00: Post-Tracking time is equal to 2 SAR clock cycles +2 FCLK cycles.
01: Post-Tracking time is equal to 4 SAR clock cycles +2 FCLK cycles.
10: Post-Tracking time is equal to 8 SAR clock cycles +2 FCLK cycles.
11: Post-Tracking time is equal to 16 SAR clock cycles +2 FCLK cycles.

5.5. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADOWINT in register ADCOCN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADCOLTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

C8051F52x/F52xA/F53x/F5

SFR Definition 5.10. ADC0GTH: ADC0 Greater-Than Data High Byte

R/W	Reset Value							
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bits7-0: High byte of ADC0 Greater-Than Data Word.

SFR Definition 5.11. ADC0GTL: ADC0 Greater-Than Data Low Byte

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xC3

Bits7-0: Low byte of ADC0 Greater-Than Data Word.

C8051F52x/F52xA/F53x/F5

SFR Definition 5.12. ADCOLTH: ADCO Less-Than Data High Byte

Bits7-0: High byte of ADC0 Less-Than Data Word.

SFR Definition 5.13. ADCOLTL: ADCO Less-Than Data Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bits7-0: Low byte of ADC0 Less-Than Data Word.

C8051F52x/F52xA/F53x/F5

5.5.1. Window Detector In Single-Ended Mode

Figure 5.7 shows two example window comparisons for right-justified data with ADCOLTH:ADC0LTL $=0 \times 0200$ (512d) and ADC0GTH:ADC0GTL $=0 \times 0100$ (256d). The input voltage can range from ' 0 ' to $\mathrm{V}_{\text {REF }} \times(4095 / 4096$) with respect to GND, and is represented by a 12-bit unsigned integer value. The repeat count is set to one. In the left example, an ADOWINT interrupt will be generated if the ADCO conversion word (ADCOH:ADCOL) is within the range defined by ADCOGTH:ADCOGTL and ADCOLTH:ADC0LTL (if $0 \times 0100<A D C O H: A D C O L<0 x 0200$). In the right example, and ADOWINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADCOGT and ADCOLT registers (if $\mathrm{ADCOH}: \mathrm{ADCOL}<0 \times 0100$ or $\mathrm{ADCOH}: A D C O L>0 x 0200$). Figure 5.8 shows an example using left-justified data with the same comparison values.

Figure 5.7. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 5.8. ADC Window Compare Example: Left-Justified Single-Ended Data

C8051F52x/F52xA/F53x/F5

Table 5.1. ADCO Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.5 \mathrm{~V}(\mathrm{REFSL}=0),-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
DC Accuracy					
Resolution		12			bits
Integral Nonlinearity		-	-	± 1	LSB
Differential Nonlinearity	Guaranteed Monotonic	-	-	± 1	LSB
Offset Error		-7	± 1	+15	LSB
Full Scale Error		-10	± 1	+4	LSB

Dynamic Performance (10 kHz sine-wave Single-ended input, 0 to 1 dB below Full Scale, 200 ksps)

Signal-to-Noise Plus Distortion		60	66	-	dB
Total Harmonic Distortion	Up to the $5^{\text {th }}$ harmonic	-	74	-	dB
Spurious-Free Dynamic Range		-	88	-	dB

Conversion Rate

SAR Conversion Clock		-	-	3	MHz
Conversion Time in SAR Clocks 1		-	13	-	clocks
Track/Hold Acquisition Time					
Throughput Rate		1	-	-	$\mu \mathrm{s}$

Analog Inputs

ADC Input Voltage Range	$\begin{aligned} & \text { gain = } 1.0 \text { (default }) \\ & \text { gain }=n \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	—	$\begin{gathered} \mathrm{V}_{\mathrm{REF}} \\ \mathrm{~V}_{\mathrm{REF}} / \mathrm{n} \end{gathered}$	V
Absolute Pin Voltage with Respect to GND		0	-	VREGIN	V
Input Capacitance		-	12	-	pF
Temperature Sensor					
Linearity ${ }^{4}$		-	0.1	-	${ }^{\circ} \mathrm{C}$
Gain ${ }^{4}$		-	2.84	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Gain Error ${ }^{3}$		-	± 100	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset ${ }^{4}$	$\left(\right.$ Temp $\left.=25^{\circ} \mathrm{C}\right)$	-	890	-	mV
Offset Error ${ }^{3}$	(Temp $=25^{\circ} \mathrm{C}$)	-	± 15	-	mV
Power Specifications					
Power Supply Current (V_{DD} supplied to ADC)	Operating Mode, 200 ksps	-	880	TBD	$\mu \mathrm{A}$
Burst Mode (Idle)		-	930	-	$\mu \mathrm{A}$
Power-on Time		-	5	-	$\mu \mathrm{s}$
Power Supply Rejection		-	1	-	mV / V

Notes:

1. An additional 2 FCLK cycles are required to start and complete a conversion.
2. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "5.3.6. Settling Time Requirements" on page 54.
3. Represents one standard deviation from the mean.
4. Includes ADC offset, gain, and linearity variations.

6. Voltage Reference

The Voltage reference MUX on C8051F52x/52xA/F53x/53xA devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the V_{DD} power supply voltage (see Figure 6.1). The REFSL bit in the Reference Control register (REFOCN) selects the reference source. For an external source or the internal reference applied to the $\mathrm{V}_{\text {REF }}$ pin, REFSL should be set to '0'. To use V_{DD} as the reference source, REFSL should be set to ' 1 '.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillators. This bit is forced to logic 1 when any of the aforementioned peripherals are enabled. The bias generator may be enabled manually by writing a ' 1 ' to the BIASE bit in register REFOCN; see SFR Definition 6.1 for REFOCN register details. The electrical specifications for the voltage reference circuit are given in Table 6.1.

The internal voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.2 V . The internal voltage reference can be driven out on the $V_{\text {REF }}$ pin by setting the REFBE bit in register REF0CN to a '1' (see Figure 6.1). The load seen by the $V_{\text {REF }}$ pin must draw less than $200 \mu \mathrm{~A}$ to GND. When using the internal voltage reference, bypass capacitors of $0.1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ are recommended from the $\mathrm{V}_{\text {REF }}$ pin to GND. If the internal reference is not used, the REFBE bit should be cleared to ' 0 '. Electrical specifications for the internal voltage reference are given in Table 6.1.

Figure 6.1. Voltage Reference Functional Block Diagram

C8051F52x/F52xA/F53x/F53xA

Important Note $A b o u t$ the $\mathbf{V}_{\text {REF }}$ Pin: Port pin P0.0 is used as the external $\mathrm{V}_{\text {REF }}$ input and as an output for the internal $\mathrm{V}_{\text {REFF }}$. When using either an external voltage reference or the internal reference circuitry, P0.0 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P0.0 as an ana\log pin, clear Bit 0 in register POMDIN to ' 0 '. To configure the Crossbar to skip P0.0, set Bit 0 in register POSKIP to '1'. Refer to Section "14. Port Input/Output" on page 118 for complete Port I/O configuration details.

The TEMPE bit in register REFOCN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADCO measurements performed on the sensor result in meaningless data.

SFR Definition 6.1. REF0CN: Reference Control

R/W	Reset Value							
Reserved	d Reserved	ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xD1
Bits7-6: RESERVED. Read = 00b. Must write 00b. Bit5: ZTCEN: Zero-TempCo Bias Enable Bit. 0: ZeroTC Bias Generator automatically enabled when 1: ZeroTC Bias Generator forced on.								
Bit4:	REFLV: Voltage Reference Output Level Select. This bit selects the output voltage level for the internal voltage reference. 0 : Internal voltage reference set to 1.5 V . 1: Internal voltage reference set to 2.2 V .							
Bit3:	REFSL: Voltage Reference Select. This bit selects the source for the internal voltage reference. 0 : $\mathrm{V}_{\text {REF }}$ pin used as voltage reference. 1: $V_{D D}$ used as voltage reference.							
Bit2:	TEMPE: Temperature Sensor Enable Bit. 0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.							
Bit1:	BIASE: Internal Analog Bias Generator Enable Bit. 0: Internal Analog Bias Generator automatically enabled when needed. 1: Internal Analog Bias Generator on.							
Bit0:	REFBE: Internal Reference Buffer Enable Bit. 0: Internal Reference Buffer disabled. 1: Internal Reference Buffer enabled. Internal voltage reference driven on the $\mathrm{V}_{\mathrm{REF}}$ pin.							

C8051F52x/F52xA/F53x/F53xA

Table 6.1. Voltage Reference Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V} ;-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Internal Reference (REFBE = 1)					
Output Voltage	$\begin{aligned} & 25^{\circ} \mathrm{C} \text { ambient }(\text { REFLV }=0) \\ & 25^{\circ} \mathrm{C} \text { ambient }(\mathrm{REFLV}=1), \mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 1.45 \\ 2.15 \end{array}$	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 2.25 \end{aligned}$	V
$\mathrm{V}_{\text {REF }}$ Short-Circuit Current		-	2.5	-	mA
$\mathrm{V}_{\text {REF }}$ Temperature Coefficient		-	33	-	ppm $/{ }^{\circ} \mathrm{C}$
Load Regulation	Load $=0$ to $200 \mu \mathrm{~A}$ to GND	-	10	-	ppm/ $/ \mathrm{A}$
$\mathrm{V}_{\text {REF }}$ Turn-on Time 1	$4.7 \mu \mathrm{~F}$ tantalum, $0.1 \mu \mathrm{~F}$ ceramic bypass	-	2	-	ms
$\mathrm{V}_{\text {REF }}$ Turn-on Time 2	$0.1 \mu \mathrm{~F}$ ceramic bypass	-	TBD	-	$\mu \mathrm{s}$
Power Supply Rejection		-	TBD	-	ppm/V
External Reference (REFBE = 0)					
Input Voltage Range		0	-	V_{DD}	V
Input Current	Sample Rate $=200 \mathrm{ksps} ; \mathrm{V}_{\text {REF }}=1.5 \mathrm{~V}$	-	35	-	$\mu \mathrm{A}$
Bias Generators					
ADC Bias Generator	BIASE = '1'	-	30	-	$\mu \mathrm{A}$
Power Consumption (Internal)		-	35	-	$\mu \mathrm{A}$

C8051F52x/F52xA/F53x/F53xA

7. Voltage Regulator (REGO)

C8051F52x/52xA/53x/53xA devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the $\mathrm{V}_{\text {REGIN }}$ pin can be as high as 5.25 V . The output can be selected by software to 2.1 V or 2.6 V. When enabled, the output of REG0 appears on the V_{DD} pin, powers the microcontroller core, and can be used to power external devices. On reset, REG0 is enabled and can be disabled by software.

The input ($\mathrm{V}_{\mathrm{REGIN}}$) and output $\left(\mathrm{V}_{\mathrm{DD}}\right)$ of the voltage regulator should both be bypassed with a large capacitor $(4.7 \mu \mathrm{~F}+0.1 \mu \mathrm{~F})$ to ground. This capacitor will eliminate power spikes and provide any immediate power required by the microcontroller. The settling time associated with the voltage regulator is shown in Table 7.1.

The voltage regulator can also generate an interrupt (if enabled by EREG0, EIE1.6) that is triggered whenever the $\mathrm{V}_{\text {REGIN }}$ input voltage drops below the dropout threshold (see Table 7.1). This dropout interrupt has no pending flag. The recommended procedure to use the interrupt is as follows:

Step 1. Wait enough time to ensure the $\mathrm{V}_{\text {REGIN }}$ input voltage is stable.
Step 2. Enable the dropout interrupt (EREG0, EIE1.6) and select the proper priority (PREG0, EIP1.6).
Step 3. If triggered, disable the interrupt in the Interrupt Service Routine (clear EREG0, EIE1.6) and execute all necessary procedures to put the system in "safe mode," leaving the interrupt disabled.
Step 4. The main application, now running in safe mode, should regularly check the DROPOUT bit (REGOCN.0). Once it is cleared by the regulator hardware, the application can reenable the interrupt (EREG0, EIE1.6) and return to normal mode operation.

Figure 7.1. External Capacitors for Voltage Regulator Input/Output

SFR Definition 7.1. REG0CN: Regulator Control

R/W	R/W	R	R/W	R	R	R	R	Reset Value
REGDIS	Reserved	-	REGOMD	-	-	-	DROPOUT	00010000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address:	0xC9
Bit7:	REGDIS: Voltage Regulator Disable Bit.							
	This bit disables/enables the Voltage Regulator.							
	0: Voltage Regulator Enabled.							
	1: Voltage Regulator Disabled.							
Bit6:	RESERVED. Read = 0b. Must write 0b.							
Bit5:	UNUSED. Read = 0b. Write = don't care.							
Bit4:	REGOMD: Voltage Regulator Mode Select Bit.							
	This bit selects the Voltage Regulator output voltage.							
	0 : Voltage Regulator output is 2.1 V .							
	1: Voltage Regulator output is 2.6 V (default).							
Bits3-1:	UNUSED. Read $=000 \mathrm{~b}$. Write = don't care.							
Bit0:	DROPOUT: Voltage Regulator Dropout Indicator Bit.							
	0: Voltage Regulator is not in dropout.							
	1: Voltage Regulator is in or near dropout.							

Table 7.1. Voltage Regulator Electrical Specifications
$\mathrm{V}_{\mathrm{DD}}=2.1$ or $2.6 \mathrm{~V} ;-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage Range ($\mathrm{V}_{\text {REGII }}$)	C8051F52x/53x C8051F52xA/53xA $V_{\text {DD }}$ connected to $V_{\text {REGIN }}$ $V_{\text {DD }}$ not connected to $V_{\text {REGIN }}$	$\begin{gathered} 2.7^{1} \\ \\ 1.8 \\ 2.2^{2} \end{gathered}$	- - -	$\begin{gathered} 5.25 \\ 2.7 \\ 5.25 \end{gathered}$	V
Dropout Voltage (V_{DO})	Output Current $=1-50 \mathrm{~mA}$	-	10	TBD	mV/mA
Output Voltage (V_{DD})	$\begin{aligned} & \text { Output Current = } 1 \text { to } 50 \mathrm{~mA} \\ & \text { REGOMD = ' } 0 \text { ' } \\ & \text { REGOMD = ' } 1 \text { ' } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.7 \end{aligned}$	V
Bias Current	$\begin{aligned} & \text { 2.1 } \mathrm{V} \text { operation (REGOMD }=\text { ' } 0 \text { ') } \\ & \text { 2.6 } \mathrm{V} \text { operation (REGOMD }=1{ }^{\prime} \text {) } \end{aligned}$		1	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\mu \mathrm{A}$
Dropout Indicator Detection Threshold		-	65	-	mV
Output Voltage Tempco		-	2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
VREG Settling Time	50 mA load with $\mathrm{V}_{\text {REGIN }}=2.4 \mathrm{~V}$ and V_{DD} load capacitor of $4.8 \mu \mathrm{~F}$	-	250	-	$\mu \mathrm{s}$
Notes: 1. The minimum input voltage is 2.7 V or $\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{DO}}(\mathrm{max}$ load), whichever is greater. 2. The minimum input voltage is 2.2 V or $\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{DO}}(\max$ load), whichever is greater.					

C8051F52x/F52xA/F53x/F53xA

8. Comparator

C8051F52x/52xA/53x/53xA devices include one on-chip programmable voltage comparator. The Comparator is shown in Figure 8.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CPO), or an asynchronous "raw" output (CPOA). The asynchronous CPOA signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP or SUSPEND mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "14.2. Port I/O Initialization" on page 125). The Comparator may also be used as a reset source (see Section "12.5. Comparator Reset" on page 106).

The Comparator inputs are selected in the CPTOMX register (SFR Definition 8.2). The CMXOP3-CMXOP0 bits select the Comparator0 positive input; the CMXON3-CMXONO bits select the Comparator0 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register and configured to be skipped by the Crossbar (for details on Port configuration, see Section "14.3. General Purpose Port I/O" on page 127).

Figure 8.1. Comparator Functional Block Diagram
The Comparator output can be polled in software, used as an interrupt source, internal oscillator suspend awakening source and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in

C8051F52x/F52xA/F53x/F53xA

STOP or SUSPEND mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100 nA . See Section "14.1. Priority Crossbar Decoder" on page 120 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to $\left(\mathrm{V}_{\text {REGIN }}\right)+0.25 \mathrm{~V}$ without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPTnMD register (see SFR Definition 8.3). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and current consumption specifications.

Figure 8.2. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPTOCN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTOCN (shown in SFR Definition 8.1). The amount of negative hysteresis voltage is determined by the settings of the CPOHYN bits. As shown in Table 8.1, settings of 20,10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPOHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "11. Interrupt Handler" on page 95). The CPOFIF flag is set to logic 1 upon a Comparator falling-edge detect, and the CPORIF flag is set to logic 1 upon the Comparator rising-edge detect. Once set, these bits remain set until cleared by software. The output state of the Com-

C8051F52x/F52xA/F53x/F53xA

parator can be obtained at any time by reading the CPOOUT bit. The Comparator is enabled by setting the CPOEN bit to logic 1 and is disabled by clearing this bit to logic 0 . When the Comparator is enabled, the internal oscillator is awakened from SUSPEND mode if the Comparator output is logic 0 .

Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 8.1 on page 77.

SFR Definition 8.1. CPTOCN: Comparator0 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CPOEN	CPOOUT	CPORIF	CPOFIF	CPOHYP1	CPOHYPO	CPOHYN1	CPOHYNO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	$\begin{aligned} & \text { SFR Address: } \\ & \text { 0x9B } \end{aligned}$
Bit7:	CPOEN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparatoro Enabled.							
Bit6:	CPOOUT: ComparatorO Output State Flag. 0 : Voltage on $\mathrm{CPO}+$ < CPO -							
Bit5:	CPORIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred.							
Bit4:	CPOFIF: Comparator0 Falling-Edge Flag. 0 : No ComparatorO Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred.							
Bits3-2:	CPOHYP1-0 00: Positive 01: Positive 10: Positive 11: Positive	Compara Hysteresis Hysteresis yysteresis Hysteresis	ro Positiv isabled. 5 mV . 10 mV . 20 mV .	Hysteresis	Control B			
Bits1-0:	CPOHYN1-0 00: Negative 01: Negative 10: Negative 11: Negative	Compar Hysteresi Hysteresi Hysteresi Hysteresi	rO Negativ Disabled. 5 mV . $=10 \mathrm{mV}$. 20 mV .	ve Hysteresi	is Control			

C8051F52x/F52xA/F53x/F53xA

SFR Definition 8.2. CPTOMX: Comparator0 MUX Selection

Bits7-4: CMXON3-CMXON0: ComparatorO Negative Input MUX Select.
These bits select which Port pin is used as the Comparator0 negative input.

CMXON3	CMXON2	CMXON1	CMXONO	Negative Input
0	0	0	0	P 0.1
0	0	0	1	P 0.3
0	0	1	0	P 0.5
0	0	1	1	$\mathrm{P} 0.7^{*}$
0	1	0	0	$\mathrm{P} 1.1^{*}$
0	1	0	1	$\mathrm{P} 1.3^{\star}$
0	1	1	0	$\mathrm{P} 1.5^{\star}$
0	1	1	1	$\mathrm{P} 1.7^{*}$

*Note: Available only on the C8051F53x/53xA devices
Bits1-0: CMX0P3-CMX0P0: Comparator0 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator0 positive input.

CMXOP3	CMXOP2	CMXOP1	CMXOP0	Positive Input
0	0	0	0	P 0.0
0	0	0	1	P 0.2
0	0	1	0	P 0.4
0	0	1	1	$\mathrm{P}^{*} 6^{\star}$
0	1	0	0	$\mathrm{P}^{\star} .0^{\star}$
0	1	0	1	$\mathrm{P}^{\star} 2^{\star}$
0	1	1	0	$\mathrm{P}^{*} 4^{\star}$
0	1	1	1	$\mathrm{P} 1.6^{\star}$

*Note: Available only on the C8051F53x/53xA devices.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 8.3. CPTOMD: Comparator0 Mode Selection

C8051F52x/F52xA/F53x/F53xA

Table 8.1. Comparator Electrical Characteristics

$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.
All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Response Time:	CPO+ - CPO- = 100 mV	-	780	-	ns
Mode 0, $\mathrm{Vcm}^{1}=1.5 \mathrm{~V}$	CP0+ - CPO- = -100 mV	-	980	-	ns
Response Time:	CP0+ - CPO- = 100 mV	-	850	-	ns
Mode 1, $\mathrm{Vcm}^{1}=1.5 \mathrm{~V}$	CP0+ - CPO- = -100 mV	-	1120	-	ns
Response Time:	CP0+ - CPO- = 100 mV	-	870	-	ns
Mode 2, $\mathrm{Vcm}^{1}=1.5 \mathrm{~V}$	CPO+ - CPO- = -100 mV	-	1310	-	ns
Response Time:	CPO+ - CPO- = 100 mV	-	1980	-	ns
Mode 3, $\mathrm{Vcm}^{1}=1.5 \mathrm{~V}$	CP0+ - CPO- = -100 mV	-	4770	-	ns
Common-Mode Rejection Ratio		-	1.5	TBD	mV / V
Positive Hysteresis 1	CP0HYP1-0 = 00	-	0.7	2	mV
Positive Hysteresis 2	CPOHYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CP0HYP1-0 = 10	5	10	20	mV
Positive Hysteresis 4	CPOHYP1-0 = 11	13	20	40	mV
Negative Hysteresis 1	CP0HYN1-0 = 00	-	0.7	2	mV
Negative Hysteresis 2	CPOHYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CPOHYN1-0 = 10	5	10	20	mV
Negative Hysteresis 4	CP0HYN1-0 = 11	13	20	40	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	-	$V_{D D}+0.25$	V
Input Capacitance		-	4	-	pF
Input Bias Current		-	0.5	-	nA
Input Offset Voltage		-10	-	10	mV
Input Impedance		-	TBD	-	$\mathrm{k} \Omega$
Power Supply					
Power Supply Rejection ${ }^{2}$		-	0.2	4	mV / V
Power-up Time		-	2.3	-	$\mu \mathrm{s}$
Supply Current at DC	Mode 0	-	13	TBD	$\mu \mathrm{A}$
	Mode 1	-	6	TBD	$\mu \mathrm{A}$
	Mode 2	-	3	TBD	$\mu \mathrm{A}$
	Mode 3	-	1	TBD	$\mu \mathrm{A}$

Notes:

1. Vcm is the common-mode voltage on $\mathrm{CPO}+$ and $\mathrm{CPO}-$
2. Guaranteed by design and/or characterization.

C8051F52x/F52xA/F53x/F53xA

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set. Standard $803 x / 805 \mathrm{x}$ assemblers and compilers can be used to develop software. The C8051F52x/52xA/53x/53xA family has a superset of all the peripherals included with a standard 8051. See Section "1. System Overview" on page 15 for more information about the available peripherals. The CIP-51 includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 core includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput
- 256 Bytes of Internal RAM
- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- Integrated Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

C8051F52x/F52xA/F53x/F53xA

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz . By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's system clock running at 25 MHz , it has a peak throughput of 25 MIPS . The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire (C2) interface. Note that the re-programmable Flash can also be read and written a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Laboratories, Inc. and third party vendors. Silicon Laboratories provides an integrated development environment (IDE) including editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the on-chip debug logic to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

9.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51 ${ }^{\mathrm{TM}}$ instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51 ${ }^{\mathrm{TM}}$ counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

9.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take two less clock cycles to complete when the branch is not taken as opposed to when the branch is taken. Table 9.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

C8051F52x/F52xA/F53x/F53xA

9.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access data stored in XDATA memory space. In the CIP-51, the MOVX instruction can also be used to write or erase on-chip program memory space implemented as reprogrammable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section "13. Flash Memory" on page 110 for further details.

Table 9.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations			
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, \#data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, \#data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, \#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations			
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, \#data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, \#data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, \#data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2

C8051F52x/F52xA/F53x/F53xA

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
ORL direct, \#data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, \#data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, \#data	Exclusive-OR immediate to direct byte	3	
CLR A	Clear A	1	1
CPL A	Complement A	1	
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, \#data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, \#data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, \#data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, \#data	Move immediate to indirect RAM	2	2
MOV DPTR, \#data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

C8051F52x/F52xA/F53x/F53xA

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, \#data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, \#data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, \#data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

C8051F52x/F52xA/F53x/F53xA

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.
@Ri - Data RAM location addressed indirectly through R0 or R1.
rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.
direct - 8-bit internal data location's address. This could be a direct-access Data RAM location ($0 \times 00-0 \times 7 \mathrm{~F}$) or an SFR ($0 \times 80-0 \times \mathrm{FF}$).
\#data - 8-bit constant
\#data16-16-bit constant
bit - Direct-accessed bit in Data RAM or SFR
addr11-11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.
addr16-16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 7680 bytes of program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.

9.2. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic 1 . Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0 , selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 9.1. SP: Stack Pointer

R/W	Reset Value							
								00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							R Add	0×81

Bits7-0: SP: Stack Pointer.
The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented before every PUSH operation. The SP register defaults to 0×07 after reset.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 9.2. DPL: Data Pointer Low Byte

SFR Definition 9.3. DPH: Data Pointer High Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0×83

Bits7-0: DPH: Data Pointer High.
The DPH register is the high byte of the 16 -bit DPTR. DPTR is used to access indirectly addressed XRAM and Flash memory.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 9.4. PSW: Program Status Word

R/W	R	Reset Value						
CY	AC	F0	RS1	RS0	OV	F1	PARITY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Addres	Bit Addressable 0xD0

Bit7: CY: Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to 0 by all other arithmetic operations.
Bit6: AC: Auxiliary Carry Flag
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.
Bit5: FO: User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.
Bits4-3: RS1-RSO: Register Bank Select.
These bits select which register bank is used during register accesses.

RS1	RS0	Register Bank	Address
0	0	0	$0 \times 00-0 \times 07$
0	1	1	$0 \times 08-0 \times 0 \mathrm{~F}$
1	0	2	$0 \times 10-0 \times 17$
1	1	3	$0 \times 18-0 \times 1 \mathrm{~F}$

Bit2: OV: Overflow Flag.
This bit is set to 1 under the following circumstances:

- An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
- A MUL instruction results in an overflow (result is greater than 255).
- A DIV instruction causes a divide-by-zero condition.

The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
Bit1: F1: User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.
Bit0: PARITY: Parity Flag.
This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 9.5. ACC: Accumulator

R/W	Reset Value							
ACC. 7	ACC. 6	ACC. 5	ACC. 4	ACC. 3	ACC. 2	ACC. 1	ACC. 0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable

Bits7-0: ACC: Accumulator.
This register is the accumulator for arithmetic operations.

SFR Definition 9.6. B: B Register

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \\ & \text { Bit } \\ & \text { Addressable } \\ & : 0 x F 0 \end{aligned}$							
B. 7	B. 6	B. 5	B. 4	B. 3	B. 2	B. 1	B. 0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit	Bit0	
Bits7-0:	B: B Register.							

9.3. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. SFR Definition 9.7 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

The C8051F52x/52xA/53x/53xA devices feature a low-power SUSPEND mode, which stops the internal oscillator until a wakening event occurs. See Section "15.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

C8051F52x/F52xA/F53x/F53xA

9.3.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0×0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system.

9.3.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0×0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout period of $100 \mu \mathrm{~s}$.

9.3.3. Suspend Mode

The C8051F52x/52xA/53x/53xA devices feature a low-power SUSPEND mode, which stops the internal oscillator until a wakening event occurs. See Section Section "15.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 9.7. PCON: Power Control

R/w	Reset Value							
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	STOP	IDLE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
					SFR Address: 0x87			
Bits7-2: RESERVED.								
Bit1:	STOP: STOP Mode Select.							
	Writing a ' 1 ' to this bit will place the CIP- 51 into STOP mode. This bit will always read ' 0 '. 1: CIP-51 forced into power-down mode. (Turns off internal oscillator).							
Bit0:	IDLE: IDLE Mode Select.							
	Writing a ' 1 ' to this bit will place the CIP- 51 into IDLE mode. This bit will always read ' 0 '. 1: CIP-51 forced into IDLE mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, and all peripherals remain active.)							

C8051F52x/F52xA/F53x/F53xA

10. Memory Organization and SFRs

The memory organization of the C8051F52x/52xA/53x/53xA is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory map is shown in Figure 10.1.

PROGRAM/DATA MEMORY
(Flash)

'F523/3A/4/4A and 'F533/3A/4/4A

0×1000	RESERVED
$0 \times 0 F F F$	4 kB Flash
0×0000	(In-System Programmable in 512 Byte Sectors)

'F526/6A/7/7A and 'F536/6A/7/7A

0×0800	
	RESERVED
$0 \times 07 F F$	2 kB Flash
(In-System Programmable in 512 Byte Sectors)	

DATA MEMORY (RAM) INTERNAL DATA ADDRESS SPACE

$0 \times F F$	Upper 128 RAM (Indirect Addressing Only)	Special Function Register's 0x80
0x7F	(Direct Addressing Only)	

Figure 10.1. Memory Map

10.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F520/0A/1/1A and C8051F530/0A/1/ 1 A implement 8 kB of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0×0000 to $0 \times 1 F F F$. Addresses above 0×1 DFF are reserved on the 8 kB devices. The C8051F523/3A/4/4A and C8051F533/3A/4/4A implement 4 kB of Flash from addresses 0×0000 to 0x0FFF. The C8051F526/6A/7/7A and C8051F536/6A/7/7A implement 2 kB of Flash from addresses 0x0000 to 0x07FF.

Program memory is normally assumed to be read-only. However, the C8051F52x/52xA/53x/53xAcan write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX write instruction. This feature provides a mechanism for updates to program code and use of the program mem-

C8051F52x/F52xA/F53x/F53xA

ory space for non-volatile data storage. Refer to Section "13. Flash Memory" on page 110 for further details.

10.2. Data Memory

The C8051F52x/52xA/53x/53xAincludes 256 bytes of internal RAM mapped into the data memory space from 0×00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations $0 x 20$ through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFRs) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 10.1 illustrates the data memory organization of the C8051F52x/ 52xA/53x/53xA.

10.3. General Purpose Registers

The lower 32 bytes of data memory (locations 0x00 through 0x1F) may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 9.4. PSW: Program Status Word). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

10.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through $0 \times 2 F$ are also accessible as 128 individually addressable bits. Each bit has a bit address from 0×00 to $0 \times 7 \mathrm{~F}$. Bit 0 of the byte at 0×20 has bit address 0×00 while bit 7 of the byte at 0×20 has bit address 0×07. Bit 7 of the byte at $0 \times 2 \mathrm{~F}$ has bit address $0 \times 7 \mathrm{~F}$. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51 ${ }^{\text {TM }}$ assembly language allows an alternate notation for bit addressing of the form XX.B where $X X$ is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h
moves the Boolean value at 0×13 (bit 3 of the byte at location 0×22) into the Carry flag.

10.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0×07. Therefore, the first value pushed on the stack is placed at location 0×08, which is also the first register (RO) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

C8051F52x/F52xA/F53x/F53xA

10.6. Special Function Registers

The direct-access data memory locations from 0×80 to $0 x F F$ constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51 ${ }^{\text {TM }}$ instruction set. Table 10.1 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0×80 to $0 x F F$. SFRs with addresses ending in 0×0 or 0×8 (e.g. PO, TCON, IE, etc.) are bit-addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 10.2, for a detailed description of each register.

Table 10.1. Special Function Register (SFR) Memory Map

F8	SPIOCN	PCAOL	PCAOH	PCAOCPLO	PCAOCPH0			VDDMON
F0	B	POMDIN	P1MDIN				EIP1	
E8	ADCOCN	PCA0CPL1	PCA0CPH1	PCAOCPL2	PCAOCPH2			RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	
D8	PCAOCN	PCAOMD	PCAOCPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REFOCN			POSKIP	P1SKIP		POMAT
C8	TMR2CN	REG0CN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		P1MAT
C0				ADCOGTL	ADCOGTH	ADCOLTL	ADCOLTH	POMASK
B8	IP		ADCOTK	ADCOMX	ADCOCF	ADCOL	ADC0	P1MASK
B0	OSCIFIN	OSCXCN	OSCICN	OSCICL				FLKEY
A8	IE	CLKSEL						
A0		SPIOCFG	SPIOCKR	SPIODAT	POMDOUT	P1MDOUT		
98	SCONO	SBUF0		CPTOCN		CPTOMD		CPTOMX
90	P1		LINADDR	LINDATA		LINCF		
88	TCON	TMOD	TLO	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

C8051F52x/F52xA/F53x/F53xA

Table 10.2. Special Function Registers
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
ACC	0xE0	Accumulator	86
ADC0CF	0xBC	ADC0 Configuration	59
ADC0CN	0xE8	ADC0 Control	61
ADCOH	0xBE	ADC0	60
ADCOL	0xBD	ADC0	60
ADC0GTH	0xC4	ADC0 Greater-Than Data High Byte	63
ADC0GTL	0xC3	ADC0 Greater-Than Data Low Byte	63
ADCOLTH	0xC6	ADC0 Less-Than Data High Byte	64
ADCOLTL	0xC5	ADC0 Less-Than Data Low Byte	64
ADCOMX	0xBB	ADC0 Channel Select	58
ADC0TK	0xBA	ADC0 Tracking Mode Select	62
B	0xF0	B Register	86
CKCON	0x8E	Clock Control	190
CLKSEL	0xA9	Clock Select	144
CPTOCN	0x9B	Comparator0 Control	74
CPTOMD	0x9D	Comparator0 Mode Selection	76
CPTOMX	0x9F	Comparator0 MUX Selection	75
DPH	0x83	Data Pointer High	84
DPL	0x82	Data Pointer Low	84
EIE1	0xE6	Extended Interrupt Enable 1	99
EIP1	0xF6	Extended Interrupt Priority 1	100
FLKEY	0xB7	Flash Lock and Key	116
IE	0xA8	Interrupt Enable	97
IP	0xB8	Interrupt Priority	98
IT01CF	0xE4	INT0/INT1 Configuration	102
LINADDR	0x92	LIN indirect address pointer	161
LINCF	0x95	LIN master-slave and automatic baud rate selection	162
LINDATA	0x93	LIN indirect data buffer	162
OSCICL	0xB3	Internal Oscillator Calibration	138
OSCICN	0xB2	Internal Oscillator Control	137
OSCXCN	0xB1	External Oscillator Control	143
P0	0x80	Port 0 Latch	128
POMASK	0xC7	Port 0 Mask	130
POMAT	0xD7	Port 0 Match	130
POMDIN	0xF1	Port 0 Input Mode Configuration	128
POMDOUT	0xA4	Port 0 Output Mode Configuration	129
POSKIP	0xD4	Port 0 Skip	129
P1	0x90	Port 1 Latch	131

C8051F52x/F52xA/F53x/F53xA

Table 10.2. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
P1MASK	0xBF	Port 1 Mask	133
P1MAT	0xCF	Port 1 Match	133
P1MDIN	0xF2	Port 1 Input Mode Configuration	131
P1MDOUT	0xA5	Port 1 Output Mode Configuration	132
P1SKIP	0xD5	Port 1 Skip	132
PCA0CN	0xD8	PCA Control	209
PCAOCPH0	0xFC	PCA Capture 0 High	212
PCA0CPH1	0xEA	PCA Capture 1 High	212
PCAOCPH2	0xEC	PCA Capture 2 High	212
PCA0CPLO	0xFB	PCA Capture 0 Low	212
PCA0CPL1	0xE9	PCA Capture 1 Low	212
PCA0CPL2	0xEB	PCA Capture 2 Low	212
PCAOCPM0	0xDA	PCA Module 0 Mode	211
PCA0CPM1	0xDB	PCA Module 1 Mode	211
PCA0CPM2	0xDC	PCA Module 2 Mode	211
PCAOH	0xFA	PCA Counter High	212
PCAOL	0xF9	PCA Counter Low	212
PCAOMD	0xD9	PCA Mode	210
PCON	0x87	Power Control	88
PSCTL	0x8F	Program Store R/W Control	116
PSW	0xD0	Program Status Word	85
REF0CN	0xD1	Voltage Reference Control	68
REG0CN	0xC9	Voltage Regulator Control	71
RSTSRC	0xEF	Reset Source Configuration/Status	108
SBUF0	0x99	UART0 Data Buffer	152
SCON0	0x98	UART0 Control	151
SP	0x81	Stack Pointer	83
SPIOCFG	0xA1	SPI Configuration	177
SPIOCKR	0xA2	SPI Clock Rate Control	179
SPIOCN	0xF8	SPI Control	178
SPIODAT	0xA3	SPI Data	180
TCON	0x88	Timer/Counter Control	188
TH0	0x8C	Timer/Counter 0 High	191
TH1	0x8D	Timer/Counter 1 High	191
TLO	0x8A	Timer/Counter 0 Low	191
TL1	0x8B	Timer/Counter 1 Low	191
TMOD	0x89	Timer/Counter Mode	189
TMR2CN	0xC8	Timer/Counter 2 Control	195

C8051F52x/F52xA/F53x/F53xA

Table 10.2. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
TMR2H	0xCD	Timer/Counter 2 High	196
TMR2L	$0 \times C C$	Timer/Counter 2 Low	196
TMR2RLH	$0 x C B$	Timer/Counter 2 Reload High	196
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	196
VDDMON	0xFF	V $_{\text {DD }}$ Monitor Control	106
XBR0	0xE1	Port I/O Crossbar Control 0	126
XBR1	0xE2	Port I/O Crossbar Control 1	127

C8051F52x/F52xA/F53x/F53xA

11. Interrupt Handler

The C8051F52x/52xA/53x/53xA family includes an extended interrupt system with two selectable priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interruptenable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

11.1. MCU Interrupt Sources and Vectors

The C8051F52x/52xA/53x/53xA MCUs support 15 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order, and control bits are summarized in Table 11.1 on page 96. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

11.2. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 11.1.

11.3. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is

C8051F52x/F52xA/F53x/F53xA

performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction, and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Table 11.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
Reset	0x0000	Top	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0(/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1(/INT1)	0×0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART	0x0023	4	$\begin{aligned} & \text { RIO (SCONO.O) } \\ & \text { TIO (SCONO.1) } \end{aligned}$	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	$\begin{aligned} & \text { TF2H (TMR2CN.7) } \\ & \text { TF2L (TMR2CN.6) } \end{aligned}$	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPIO	0x0033	6	SPIF (SPIOCN.7) WCOL (SPIOCN.6) MODF (SPIOCN.5) RXOVRN (SPIOCN.4)	Y	N	$\begin{aligned} & \text { ESPIO } \\ & \text { (IE.6) } \end{aligned}$	$\begin{gathered} \text { PSPIO } \\ \text { (IP.6) } \end{gathered}$
ADC0 Window Comparator	0x003B	7	$\begin{aligned} & \text { ADOWINT } \\ & \text { (ADC0CN.3) } \end{aligned}$	Y	N	$\begin{gathered} \hline \text { EWADC0 } \\ \text { (EIE1.0) } \end{gathered}$	$\begin{aligned} & \hline \text { PWADC0 } \\ & \text { (EIP1.0) } \end{aligned}$
ADC0 End of Conversion	0×0043	8	ADOINT (ADCOCN.5)	Y	N	$\begin{aligned} & \text { EADC0 } \\ & \text { (EIE1.1) } \end{aligned}$	$\begin{aligned} & \hline \text { PADC0 } \\ & \text { (EIP1.1) } \end{aligned}$
Programmable Counter Array	0x004B	9	CF (PCAOCN.7) CCFn (PCA0CN.n)	Y	N	$\begin{aligned} & \hline \text { EPCA0 } \\ & \text { (EIE1.2) } \end{aligned}$	$\begin{aligned} & \hline \text { PPCA0 } \\ & \text { (EIP1.2) } \end{aligned}$
Comparator Falling Edge	0x0053	10	CPOFIF (CPTOCN.4)	N	N	$\begin{aligned} & \text { ECPF } \\ & \text { (EIE1.3) } \end{aligned}$	$\begin{aligned} & \text { PCPF } \\ & \text { (EIP1.3) } \end{aligned}$
Comparator Rising Edge	0x005B	11	CPORIF (CPTOCN.5)	N	N	$\begin{aligned} & \text { ECPR } \\ & \text { (EIE1.4) } \end{aligned}$	$\begin{aligned} & \text { PCPR } \\ & \text { (EIP1.4) } \end{aligned}$
LIN Interrupt	0x0063	12	LININT (LINST.3)	N	N*	$\begin{gathered} \text { ELIN } \\ \text { (EIE1.5) } \end{gathered}$	$\begin{gathered} \text { PLIN } \\ \text { (EIP1.5) } \end{gathered}$
Voltage Regulator Dropout	0x006B	13	N/A	N/A	N/A	$\begin{aligned} & \text { EREGO } \\ & \text { (EIE1.6) } \end{aligned}$	$\begin{aligned} & \text { PREG0 } \\ & \text { (EIP1.6) } \end{aligned}$
Port Match	0x0073	14	N/A	N/A	N/A	$\begin{gathered} \text { EMAT } \\ \text { (EIE1.7) } \end{gathered}$	$\begin{aligned} & \text { PMAT } \\ & \text { (EIP1.7) } \end{aligned}$

C8051F52x/F52xA/F53x/F53xA

11.4. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 11.1. IE: Interrupt Enable

R/W	Reset Value							
EA	ESPIO	ET2	ES0	ET1	EX1	ETO	EX0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							Addr	OxA8
Bit7:	EA: Global Interrupt Enable.							
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask settings.							
	0: Disable all interrupt sources.							
	1: Enable e	interr	cordi	is ind	mas			
Bit6:	ESPIO: Enable Serial Peripheral Interface (SPIO) Interrupt.							
	This bit sets the masking of the SPIO interrupts.							
	0 : Disable all SPIO interrupts.							
	1: Enable interrupt requests generated by SPIO.							
Bit5:	ET2: Enable Timer 2 Interrupt.							
	This bit sets the masking of the Timer 2 interrupt.							
	0 : Disable Timer 2 interrupt.							
	1: Enable interrupt requests generated by the TF2L or TF2H flags.							
Bit4:	ESO: Enable UARTO Interrupt.							
	This bit sets the masking of the UART0 interrupt.							
	0: Disable UART0 interrupt.							
	1: Enable UART0 interrupt.							
Bit3:	ET1: Enable Timer 1 Interrupt.							
	This bit sets the masking of the Timer 1 interrupt.							
	0 : Disable all Timer 1 interrupt.							
	1: Enable interrupt requests generated by the TF1 flag.							
Bit2:	EX1: Enable External Interrupt 1.							
	This bit sets the masking of the external interrupt 1.							
	0 : Disable external interrupt 1.							
	1: Enable extern interrupt 1 requests.							
Bit1:	ETO: Enable Timer 0 Interrupt.							
	This bit sets the masking of the Timer 0 interrupt.							
	0 : Disable all Timer 0 interrupt.							
	1: Enable interrupt requests generated by the TF0 flag.							
Bit0:	EXO: Enable External Interrupt 0.							
	This bit sets the masking of the external interrupt 0.							
	0 : Disable external interrupt 0.							
	1: Enable extern interrupt 0 requests.							

C8051F52x/F52xA/F53x/F53xA

SFR Definition 11.2. IP: Interrupt Priority

R	R/W	Reset Value						
-	PSPIO	PT2	PS0	PT1	PX1	PT0	PX0	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 SFR Addr	Bit Addressable 0xB8
Bit7 Bit6:	UNUSED. Read = 1b; Write = don't care. PSPIO: Serial Peripheral Interface (SPIO) Interrupt Priority Control. This bit sets the priority of the SPIO interrupt. 0: SPIO interrupt set to low priority level. 1: SPIO interrupt set to high priority level.							
Bit5:	PT2: Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0 : Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level.							
Bit4:	PSO: UARTO Interrupt Priority Control. This bit sets the priority of the UARTO interrupt. 0: UARTO interrupt set to low priority level. 1: UARTO interrupt set to high priority level.							
Bit3:	PT1: Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0 : Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level.							
Bit2:	PX1: External Interrupt 0 Priority Control. This bit sets the priority of the external interrupt 1. 0 : INT1 interrupt set to low priority level. 1: INT1 interrupt set to high priority level.							
Bit1:	PTO: Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupt. 0 : Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level.							
Bit0:	PXO: Extern This bit sets 0: INTO inte 1: INTO inte	prior	riority	rol. interrup el. vel.				

C8051F52x/F52xA/F53x/F53xA

SFR Definition 11.3. EIE1: Extended Interrupt Enable 1

R/w	Reset Value							
EMAT	EREG0	ELIN	ECPR	ECPF	EPCAO	EADCO	EWADC0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	0xE6
Bit7:	EMAT: Enable Port Match Interrupt.							
	This bit sets the masking of the Port Match interrupt.							
	0 0: Disable the Port Match interrupt.							
	1: Enable th	Port Ma	interrupt					
Bit6:	EREGO: Enable Voltage Regulator Interrupt.							
	This bit sets the masking of the Voltage Regulator Dropout interrupt.							
	0: Disable the Voltage Regulator Dropout interrupt.							
	1: Enable the Voltage Regulator Dropout interrupt.							
Bit5:	ELIN: Enable LIN Interrupt.							
	This bit sets the masking of the LIN interrupt.							
	0: Disable LIN interrupts.							
	1: Enable LIN interrupt requests.							
Bit4:	ECPR: Enable Comparator 0 Rising Edge Interrupt							
	This bit sets the masking of the CP0 Rising Edge interrupt.							
	0 : Disable CPO Rising Edge Interrupt.							
	1: Enable CPO Rising Edge Interrupt.							
Bit3:	ECPF: Enable Comparator 0 Falling Edge Interrupt							
	This bit sets the masking of the CPO Falling Edge interrupt.							
	0 : Disable CPO Falling Edge Interrupt.							
	1: Enable CPO Falling Edge Interrupt.							
Bit2:	EPCAO: Enable Programmable Counter Array (PCAO) Interrupt.							
	This bit sets the masking of the PCAO interrupts.							
	0 : Disable all PCAO interrupts.							
	1: Enable interrupt requests generated by PCAO.							
Bit1:	EADCO: Enable ADCO Conversion Complete Interrupt.							
	This bit sets the masking of the ADCO Conversion Complete interrupt.							
	0 : Disable ADCO Conversion Complete interrupt.							
	1: Enable interrupt requests generated by the ADOINT flag.							
Bito:	EWADCO: Enable ADCO Window Comparison Interrupt.							
	This bit sets the masking of the ADCO Window Comparison interrupt.							
	0: Disable ADCO Window Comparison interrupt.							
	1: Enable interrupt requests generated by the ADOWINT flag.							

C8051F52x/F52xA/F53x/F53xA

SFR Definition 11.4. EIP1: Extended Interrupt Priority 1

R/W	Reset Value							
PMAT	PREG0	PLIN	PCPR	PCPF	PPACO	PREG0	PWADC0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address: 0xF6	
Bit7:	PMAT. Port Match Interrupt Priority Control.							
	This bit sets the priority of the Port Match interrupt.							
	0: Port Match interrupt set to low priority level.							
	1: Port Match interrupt set to high priority level.							
Bit6:	PREGO: Voltage Regulator Interrupt Priority Control.							
	This bit sets the priority of the Voltage Regulator interrupt.							
	0 : Voltage Regulator interrupt set to low priority level.							
	1: Voltage Regulator interrupt set to high priority level.							
Bit5:	PLIN: LIN Interrupt Priority Control.							
	This bit sets the priority of the CPO interrupt.							
	0: LIN interrupt set to low priority level.							
	1: LIN interrupt set to high priority level.							
Bit4:	PCPR: Comparator Rising Edge Interrupt Priority Control.							
	This bit sets the priority of the Rising Edge Comparator interrupt.							
	0 : Comparator interrupt set to low priority level.							
	1: Comparator interrupt set to high priority level.							
Bit3:	PCPF: Comparator falling Edge Interrupt Priority Control.							
	This bit sets the priority of the Falling Edge Comparator interrupt.							
	0: Comparator interrupt set to low priority level.							
	1: Comparator interrupt set to high priority level.							
Bit2:	PPACO: Programmable Counter Array (PCA0) Interrupt Priority Control.							
	This bit sets the priority of the PCAO interrupt.							
	0 : PCAO interrupt set to low priority level.							
	1: PCAO interrupt set to high priority level.							
Bit1:	PREGO: ADC0 Conversion Complete Interrupt Priority Control.							
	This bit sets the priority of the ADCO Conversion Complete interrupt.							
	0 : ADCO Conversion Complete interrupt set to low priority level.							
	1: ADCO Conversion Complete interrupt set to high priority level.							
Bit0:	PWADC0: ADCO Window Comparison Interrupt Priority Control.							
	This bit sets the priority of the ADCO Window Comparison interrupt.							
	0: ADC0 Window Comparison interrupt set to low priority level.							
	1: ADCO Window Comparison interrupt set to high priority level.							

C8051F52x/F52xA/F53x/F53xA

11.5. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the ITO and IT1 bits in TCON (Section "19.1. Timer 0 and Timer 1" on page 184) select level or edge sensitive. The table below lists the possible configurations.

IT0	INOPL	IINT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	IINT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 11.5). Note that /INTO and /INTO Port pin assignments are independent of any Crossbar assignments. /INTO and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INTO and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "14.1. Priority Crossbar Decoder" on page 120 for complete details on configuring the Crossbar).

In the typical configuration, the external interrupt pins should be skipped in the crossbar and configured as open-drain with the pin latch set to '1'. See Section "14. Port Input/Output" on page 118 for more information.

IEO (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INTO and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 11.5. IT01CF: INT0/INT1 Configuration

R/W	$\begin{aligned} & \text { Reset Value } \\ & {[00000001} \end{aligned}$							
IN1PL	IN1SL2	IN1SL1	IN1SL0	INOPL	INOSL2	INOSL1	INOSLO	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Note: Refer to SFR Definition 19.1. "TCON: Timer Control" on page 188 for INTO/1 edge- or level-sensitive interrupt selection.

Bit 7: IN1PL: /INT1 Polarity
0 : /INT1 input is active low.
1: /INT1 input is active high.
Bits 6-4: IN1SL2-0: /INT1 Port Pin Selection Bits
These bits select which Port pin is assigned to /INT1. Note that this pin assignment is independent of the Crossbar; /INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by setting to ' 1 ' the corresponding bit in register P0SKIP).

IN1SL2-0	IINT1 Port Pin
000	P 0.0
001	P 0.1
010	P 0.2
011	P 0.3
100	P 0.4
101	P 0.5
110	$\mathrm{P} 0.6^{*}$
111	P0.7*
*Note: Available in the C80151F53x/C8051F53xA parts.	

Bit 3: INOPL: /INTO Polarity
0 : /INT0 interrupt is active low.
1: /INT0 interrupt is active high.
Bits 2-0: INTOSL2-0: /INTO Port Pin Selection Bits
These bits select which Port pin is assigned to /INTO. Note that this pin assignment is independent of the Crossbar. /INTO will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by setting to ' 1 ' the corresponding bit in register P0SKIP).

IN0SL2-0	IINT0 Port Pin
000	P 0.0
001	P 0.1
010	P 0.2
011	P 0.3
100	P 0.4
101	P 0.5
110	$\mathrm{P} 0.6^{*}$
111	
P0.7*	
*Note: Available in the C80151F53x/C8051F53xA parts.	

C8051F52x/F52xA/F53x/F53xA

12. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For $V_{D D}$ Monitor and power-on resets, the $\overline{\mathrm{RST}}$ pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to Section "15. Oscillators" on page 135 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (Section "20.3. Watchdog Timer Mode" on page 205 details the use of the Watchdog Timer). Program execution begins at location 0×0000.

Figure 12.1. Reset Sources

C8051F52x/F52xA/F53x/F53xA

12.1. Power-On Reset

During power-up, the device is held in a reset state and the $\overline{\mathrm{RST}}$ pin is driven low until V_{DD} settles above $\mathrm{V}_{\mathrm{RST}}$. An additional delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to $\mathrm{V}_{\mathrm{RST}}$). Figure 12.2 plots the power-on and $V_{D D}$ monitor reset timing. For valid ramp times (less than 1 ms), the power-on reset delay ($T_{\text {PORDelay }}$) is typically less than 0.3 ms .

Note: The maximum $V_{D D}$ ramp time is 1 ms ; slower ramp times may cause the device to be released from reset before $V_{D D}$ reaches the $V_{R S T}$ level.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Figure 12.2. Power-On and V_{DD} Monitor Reset Timing

C8051F52x/F52xA/F53x/F53xA

12.2. Power-Fail Reset / VDD Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below $\mathrm{V}_{\mathrm{RST}}$, the power supply monitor will drive the RST pin low and hold the CIP-51 in a reset state (see Figure 12.2). When V_{DD} returns to a level above $\mathrm{V}_{\text {RST }}$, the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads ' 1 ', the data may no longer be valid. The $V_{D D}$ monitor is enabled and is not selected as a reset source after power-on resets; however its defined state (enabled/disabled) is not altered by any other reset source. For example, if the $V_{D D}$ monitor is disabled by software, and a software reset is performed, the $V_{D D}$ monitor will still be disabled after the reset. To protect the integrity of Flash contents, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = ' 1 ') and selected as a reset source if software contains routines which erase or write Flash memory. If the $V_{D D}$ monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for reenabling the V_{DD} monitor and configuring the V_{DD} monitor as a reset source is shown below:

Step 1. Enable the V_{DD} monitor (VDMEN bit in VDDMON = ' 1 ').
Step 2. Wait for the V_{DD} monitor to stabilize (see Table 12.1 for the V_{DD} Monitor turn-on time). Note: This delay should be omitted if software contains routines which write or erase Flash memory.
Step 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = ' 1 ').
See Figure 12.2 for V_{DD} monitor timing; note that the reset delay is not incurred after a V_{DD} monitor reset. See Table 12.1 for complete electrical characteristics of the V_{DD} monitor.

Note: Software should take care not to inadvertently disable the $V_{D D}$ Monitor as a reset source when writing to RSTSRC to enable other reset sources or to trigger a software reset. All writes to RSTSRC should explicitly set PORSF to '1' to keep the V_{DD} Monitor enabled as a reset source.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 12.1. VDDMON: VDD Monitor Control

R/W	R	R/W				R	R	eset Value
VDMEN	VDDSTAT	VDMLVL	Reserved	Reserved	Reserved	Reserved	Reserv	v00000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							R	
Bit7:	VDMEN: V_{DD} Monitor Enable. This bit turns the V_{DD} monitor circuit on/off. The V_{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 12.2). The V_{DD} Monitor can be allowed to stabilize before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it has stabilized may generate a system reset. See Table 12.1 for the minimum $V_{D D}$ Monitor turn-on time. 0: $V_{D D}$ Monitor Disabled. 1: V_{DD} Monitor Enabled (default).							
Bit6:	0 : $V_{D D}$ is at or below the $V_{D D}$ Monitor Threshold. 1: $V_{D D}$ is above the $V_{D D}$ Monitor Threshold.							
Bit5:	0 : V_{DD} Monitor Threshold is set to $\mathrm{V}_{\mathrm{RST}}$ Low (default). 1: V_{DD} Monitor Threshold is set to $\mathrm{V}_{\mathrm{RST} \text {-HIGH }}$. This setting is required for any system that includes code that writes to and/or erases Flash.							

12.3. External Reset

The external $\overline{\operatorname{RST}}$ pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 12.1 for complete RST pin specifications. The PINRSF flag (RSTSRC. 0) is set on exit from an external reset.

12.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than $100 \mu \mathrm{~s}$, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read ' 1 ', signifying the MCD as the reset source; otherwise, this bit reads ' 0 '. Writing a ' 1 ' to the MCDRSF bit enables the Missing Clock Detector; writing a ' 0 ' disables it. The state of the $\overline{\mathrm{RST}}$ pin is unaffected by this reset.

12.5. Comparator Reset

Comparator0 can be configured as a reset source by writing a ' 1 ' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-

C8051F52x/F52xA/F53x/F53xA

inverting input voltage (on CPO+) is less than the inverting input voltage (on CPO-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read ' 1 ' signifying Comparator0 as the reset source; otherwise, this bit reads ' 0 '. The state of the RST pin is unaffected by this reset.

12.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "20.3. Watchdog Timer Mode" on page 205; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to ' 1 '. The state of the RST pin is unaffected by this reset.

12.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to ' 1 ' and a MOVX write operation targets an address above the Lock Byte address.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above the Lock Byte address.
- A program read is attempted above user code space. This occurs when user code attempts to branch to an address above the Lock Byte address.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "13.4. Security Options" on page 114).
- A Flash write or erase is attempted while the V_{DD} Monitor is disabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the $\overline{\mathrm{RST}}$ pin is unaffected by this reset.

12.8. Software Reset

Software may force a reset by writing a ' 1 ' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read ' 1 ' following a software forced reset. The state of the $\overline{R S T}$ pin is unaffected by this reset.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 12.2. RSTSRC: Reset Source

R/W	R	R/W	R/W	R	R/w	R/w	R	Reset Value Variable
-	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Note: Software should avoid read modify write instructions when writing values to RSTSRC.
Bit7: UNUSED. Read = 1, Write = don't care.
Bit6: FERROR: Flash Error Indicator.
0: Source of last reset was not a Flash read/write/erase error.
1: Source of last reset was a Flash read/write/erase error.
Bit5: CORSEF: Comparator0 Reset Enable and Flag.
0: Read: Source of last reset was not Comparator0.
Write: Comparator0 is not a reset source.
1: Read: Source of last reset was Comparatoro.
Write: Comparator0 is a reset source (active-low).
Bit4: SWRSF: Software Reset Force and Flag.
0 : Read: Source of last reset was not a write to the SWRSF bit.
Write: No Effect.
1: Read: Source of last reset was a write to the SWRSF bit. Write: Forces a system reset.
Bit3: WDTRSF: Watchdog Timer Reset Flag.
0: Source of last reset was not a WDT timeout.
1: Source of last reset was a WDT timeout.
Bit2: MCDRSF: Missing Clock Detector Flag.
0 : Read: Source of last reset was not a Missing Clock Detector timeout.
Write: Missing Clock Detector disabled.
1: Read: Source of last reset was a Missing Clock Detector timeout.
Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected.
Bit1: PORSF: Power-On Reset Force and Flag.
This bit is set anytime a power-on reset occurs. Writing this bit enables/disables the $V_{D D}$ monitor as a reset source. Note: writing ' 1 ' to this bit before the $V_{D D}$ monitor is enabled and stabilized may cause a system reset. See register VDDMON (SFR Definition 12.1) 0 : Read: Last reset was not a power-on or $V_{D D}$ monitor reset.

Write: $V_{D D}$ monitor is not a reset source.
1: Read: Last reset was a power-on or V_{DD} monitor reset; all other reset flags indeterminate.

Write: V_{DD} monitor is a reset source.
Bit0: PINRSF: HW Pin Reset Flag.
0 : Source of last reset was not $\overline{R S T}$ pin.
1: Source of last reset was RST pin.

C8051F52x/F52xA/F53x/F53xA

Table 12.1. Reset Electrical Characteristics
-40 to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
$\overline{\mathrm{RST}}$ Output Low Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}= \\ & 2.1 \mathrm{~V} \end{aligned}$	-	-	0.8	V
$\overline{\mathrm{RST}}$ Input High Voltage		$\begin{gathered} 0.7 x \\ \mathrm{~V}_{\mathrm{REGIN}} \end{gathered}$	-	-	V
$\overline{\mathrm{RST}}$ Input Low Voltage		-	-	$\begin{gathered} 0.3 x \\ \mathrm{~V}_{\mathrm{REGIN}} \end{gathered}$	V
$\overline{\mathrm{RST}}$ Input Pullup Impedance	$\mathrm{V}_{\text {REGIN }}=3.3 \mathrm{~V}$	-	126	-	$\mathrm{k} \Omega$
$\overline{\mathrm{RST}}$ Input Pullup $\mathrm{V}_{\text {REGIN }}$ Sensitivity ${ }^{1}$		-	-34.8	-	k $/$ /V
$\mathrm{V}_{\text {DD }}$ Monitor Threshold ($\mathrm{V}_{\text {RST-Low }}$)	C8051F52x/53x C8051F52xA/53xA	$\begin{aligned} & \hline 1.8 \\ & 1.7 \end{aligned}$	$\begin{gathered} 1.9 \\ 1.75 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {DD }}$ Monitor Threshold ($\mathrm{V}_{\text {RST-HIGH }}$)	$\begin{aligned} & \text { C8051F52x/53x } \\ & \text { C8051F52xA/53xA } \end{aligned}$	$\begin{gathered} 2.1 \\ 2.25 \end{gathered}$	$\begin{aligned} & 2.2 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2.4 \end{aligned}$	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	TBD	350	650	$\mu \mathrm{s}$
Reset Time Delay ${ }^{2}$	Delay between release of any reset source and code execution at location 0×0000	-	-	350	$\mu \mathrm{s}$
Minimum $\overline{\mathrm{RST}}$ Low Time to Generate a System Reset		TBD	-	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Turn-on Time		-	TBD	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Supply Current	$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}$	-	23	TBD	$\mu \mathrm{A}$

Notes:

1. The $\overline{\mathrm{RST}}$ Input Pullup Impedance can be estimated by taking the impendance at a $\mathrm{V}_{\text {REGIN }}$ of 3.3 V minus the difference in impendance indicated by the sensitivity number. For example: $\mathrm{V}_{\text {REGIN }}=5 \mathrm{~V}$; Impedance $=126$ $\mathrm{k} \Omega-(3.3 \mathrm{~V}-5 \mathrm{~V})$ * $-34.8 \mathrm{k} \Omega / \mathrm{V}=60 \mathrm{k} \Omega$.
2. Refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

13. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX write instruction. Once cleared to logic 0 , a Flash bit must be erased to set it back to logic 1 . Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operations is not required. Code execution is stalled during Flash write/erase operations. Refer to Table 13.2 for complete Flash memory electrical characteristics.

13.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C 2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "22. C2 Interface" on page 216.
To protect the integrity of Flash contents, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = ' 1 ') and selected as a reset source if software contains routines which erase or write Flash memory. If the V_{DD} monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for reenabling the V_{DD} monitor and configuring the V_{DD} monitor as a reset source is shown below:

Step 1. Enable the $V_{D D}$ monitor (VDMEN bit in VDDMON = ' 1 ').
Step 2. Wait for the V_{DD} monitor to stabilize (see Table 12.1 for the V_{DD} Monitor turn-on time).
Note: This delay should be omitted if software contains routines which write or erase Flash memory.
Step 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = ' 1 ').

13.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 13.2.

C8051F52x/F52xA/F53x/F53xA

13.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

Step 1. Disable interrupts (recommended).
Step 2. Write the first key code to FLKEY: 0xA5.
Step 3. Write the second key code to FLKEY: 0xF1.
Step 4. Set the PSEE bit (register PSCTL).
Step 5. Set the PSWE bit (register PSCTL).
Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
Step 7. Clear the PSWE and PSEE bits.
Step 8. Re-enable interrupts.

13.1.3. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:
Step 1. Disable interrupts.
Step 2. Write the first key code to FLKEY: OxA5.
Step 3. Write the second key code to FLKEY: 0xF1.
Step 4. Set the PSWE bit (register PSCTL).
Step 5. Clear the PSEE bit (register PSCTL).
Step 6. Using the MOVX instruction, write a single data byte to the desired location within the 512byte sector.
Step 7. Clear the PSWE bit.
Step 8. Re-enable interrupts.
Steps 2-7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

C8051F52x/F52xA/F53x/F53xA

13.2. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD}, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

13.2.1. V_{DD} Maintenance and the V_{DD} monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
2. Make certain that the minimum V_{DD} rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external $V_{D D}$ brownout circuit to the $\overline{\operatorname{RST}}$ pin of the device that holds the device in reset until V_{DD} reaches 1.8 V and re-asserts $\overline{\mathrm{RST}}$ if V_{DD} drops below 1.8 V .
3. Enable the on-chip V_{DD} monitor and enable the V_{DD} monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For 'C'based systems, this will involve modifying the startup code added by the 'C' compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the $V_{D D}$ monitor and enabling the $V_{D D}$ monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
4. As an added precaution, explicitly enable the $V_{D D}$ monitor and enable the $V_{D D}$ monitor as a reset source inside the functions that write and erase Flash memory. The $V_{D D}$ monitor enable instructions should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase operation instruction.
5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC $=0 \times 02$ " is correct. "RSTSRC $\mid=0 \times 02$ " is incorrect.
6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a ' 1 '. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

13.2.2. PSWE Maintenance

7. Reduce the number of places in code where the PSWE bit (PSCTL.0) is set to a ' 1 '. There should be exactly one routine in code that sets PSWE to a '1' to write Flash bytes and one routine in code that sets PSWE and PSEE both to a ' 1 ' to erase Flash pages.
8. Minimize the number of variable accesses while PSWE is set to a '1'. Handle pointer address updates and loop variable maintenance outside the "PSWE $=1 ; \ldots$ PSWE $=0 ;$ " area. Code examples showing this can be found in "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories web site.
9. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been reset to '0'. Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.

C8051F52x/F52xA/F53x/F53xA

10. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
11. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

13.2.3. System Clock

12. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
13. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in "AN201: Writing to Flash from Firmware," available from the Silicon Laboratories web site.

C8051F52x/F52xA/F53x/F53xA

13.3. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

13.4. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to ' 1 ' before software can modify the Flash memory; both PSWE and PSEE must be set to ' 1 ' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0×0000 to 0×01 FF), where n is the 1's complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are ' 1 ') and locked when any other Flash pages are locked (any bit of the Lock Byte is ' 0 '). See example below.

Security Lock Byte: 1's Complement:	$\begin{aligned} & 11111101 \mathrm{~b} \\ & 00000010 \mathrm{~b} \end{aligned}$
Flash pages locked:	3 (First two Flash pages + Lock Byte Page)
	0×0000 to 0x03FF (first two Flash pages)
Addresses locked:	0×1 C00 to 0x1DFF in 'F520/0A/1/1A and 'F530/0A/1/1A $0 \times 0 C 00$ to $0 \times 0 F F F$ in 'F523/3A/4/4A and 'F533/3A/4/4A and 0×0600 to $0 \times 07 \mathrm{FF}$ in 'F526/6A/7/7A and 'F536/6A/7/7A

'F526/6A/7/7A and 'F536/6A/7/7A

Reserved	
Lock Byte	$0 \times 07 \mathrm{FF}$
Unlocked Flash Pages	
	0×0600
	0×0000

Figure 13.1. Flash Program Memory Map

C8051F52x/F52xA/F53x/F53xA

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 13.1 summarizes the Flash security features of the 'F52x/'F52xA/'F53x/'F53xA devices.

Table 13.1. Flash Security Summary

Action	C2 Debug	User Firmware executing from:	
	Interface	an unlocked page	a locked page
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	Flash Error Reset	Flash Error Reset
Erase page containing Lock Byte - Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset
Lock additional pages (change '1's to '0's in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Unlock individual pages (change '0's to '1's in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset

C2 Device Erase - Erases all Flash pages including the page containing the Lock Byte.
Flash Error Reset - Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).
- Locking any Flash page also locks the page containing the Lock Byte.
- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 13.1. PSCTL: Program Store R/W Control

R	R	R	R	R	R	R/W	R/W	Reset Value
-						PSEE	PSWE	00000000
Bit7	Bit6		Bit4	Bit3	Bit2	Bit1	Bit0	
			SFR Address: $0 \times 8 \mathrm{~F}$					
Bits7-2: Bit1:	UNUSED: Read $=000000 \mathrm{~b}$, Write $=$ don't care .							
	PSEE: Program Store Erase Enable							
	Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0 : Flash program memory erasure disabled. 1: Flash program memory erasure enabled.							
Bit0:	PSWE: Program Store Write Enable							
	Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data.							
	1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.							

SFR Definition 13.2. FLKEY: Flash Lock and Key

R/W	Reset Value 00000000							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Add	0xB7

Bits7-0: FLKEY: Flash Lock and Key Register
Write:
This register provides a lock and key function for Flash erasures and writes. Flash writes and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY register. Flash writes and erases are automatically disabled after the next write or erase is complete. If any writes to FLKEY are performed incorrectly, or if a Flash write or erase operation is attempted while these operations are disabled, the Flash will be permanently locked from writes or erasures until the next device reset. If an application never writes to Flash, it can intentionally lock the Flash by writing a non-0xA5 value to FLKEY from software.
Read:
When read, bits 1-0 indicate the current Flash lock state.
00: Flash is write/erase locked.
01: The first key code has been written (0xA5).
10: Flash is unlocked (writes/erases allowed).
11: Flash writes/erases disabled until the next reset.

C8051F52x/F52xA/F53x/F53xA

Table 13.2. Flash Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=1.8$ to $2.75 \mathrm{~V} ;-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Flash Size	'F520/0A/1/1A and 'F530/0A/1/1A	7680			
	'F523/3A/4/4A and 'F533/3A/4/4A	4096	-	-	bytes
	'F526/6A/7/7A and 'F536/6A/7/7A	2048			
Endurance	$V_{\text {DD }}$ is 2.25 V or greater	40 k	150 k	-	Erase/Write
Erase Cycle		32	40	48	ms
Time		76	92	114	$\mu \mathrm{~s}$
Write Cycle Time		2.25	-	-	V
$V_{\text {DD }}$	Write/Erase Operations				

C8051F52x/F52xA/F53x/F53xA

14. Port Input/Output

Digital and analog resources are available through up to 16 I/O pins. Port pins are organized as two or one byte-wide Ports. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input/output; Port pins P0.0-P1.7 can be assigned to one of the internal digital resources as shown in Figure 14.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the peripheral priority order of the Priority Decoder (Figure 14.3 and Figure 14.4). The registers XBR0 and XBR1, defined in SFR Definition 14.1 and SFR Definition 14.2, are used to select internal digital functions.

Port I/O pins are 5.25 V tolerant over the operating range of $\mathrm{V}_{\text {REGIN }}$. Figure 14.2 shows the Port cell circuit. The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where $n=0,1$). Complete Electrical Specifications for Port I/O are given in Table 14.1 on page 134.

Figure 14.1. Port I/O Functional Block Diagram

C8051F52x/F52xA/F53x/F53xA

Figure 14.2. Port I/O Cell Block Diagram

C8051F52x/F52xA/F53x/F53xA

14.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 14.3) assigns a priority to each I/O function, starting at the top with UARTO. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UARTO, which will be assigned to pins P0.4 and P0.5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

*Note: 4-Wire SPI Only.
Figure 14.3. Crossbar Priority Decoder with No Pins Skipped (TSSOP 20 and QFN 20)

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P1.0 and/or P0.7 ('F53x/'F53xA) or

C8051F52x/F52xA/F53x/F53xA

P0.2 and/or P0.3 ('F52x/'F52xA) for the external oscillator, P0.0 for $\mathrm{V}_{\text {REF }}$ P1.2 ('F53x/'F53xA) or P0.5 ('F52x/'F52xA) for the external CNVSTR signal, and any selected ADC or comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 14.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP); Figure 14.4 shows the Crossbar Decoder priority with the XTAL1 (P1.0) and XTAL2 (P1.1) pins skipped (P1SKIP = 0x03).

Important Note on UART Pins: On C8051F52xA/53xA devices, the UART pins must be skipped if the UART is enabled in order for peripherals to appear on port pins beyond the UART on the crossbar. For example, with the SPI and UART enabled on the crossbar with the SPI on P1.0-P1.3, the UART pins must be skipped using POSKIP for the SPI pins to appear correctly.

C8051F52x/F52xA/F53x/F53xA

Port pin potentially assignable to peripheral	
SF Signals	Special Function Signals are not assigned by the crossbar. When these signals are enabled, the Crossbar must be manually configured to skip their corresponding port pins.

*Note: 4-Wire SPI Only.
Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped (TSSOP 20 and QFN 20)

C8051F52x/F52xA/F53x/F53xA

*Note: 4-Wire SPI Only.
Figure 14.5. Crossbar Priority Decoder with No Pins Skipped (DFN 10)

C8051F52x/F52xA/F53x/F53xA

SF Signals	Special Function Signals are not assigned by the crossbar.
When these signals are enabled, the Crossbar must be manually configured	
to skip their corresponding port pins.	

*Note: 4-Wire SPI Only.
Figure 14.6. Crossbar Priority Decoder with Some Pins Skipped (DFN 10)

Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UARTO pin assignments are fixed for bootloading purposes: UART TXO is always assigned to P0.3 or P0.4*; UART RXO is always assigned to P0.4 or P0.5*. Standard Port I/Os appear contiguously starting at P0.0 after prioritized functions and skipped pins are assigned.
*Note: Refer to Section "21. Device Specific Behavior" on page 213.

C8051F52x/F52xA/F53x/F53xA

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1-NSSMD0 bits in register SPIOCN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

14.2. Port I/O Initialization

Port I/O initialization consists of the following steps:
Step 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
Step 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
Step 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
Step 4. Assign Port pins to desired peripherals using the XBRn registers.
Step 5. Enable the Crossbar (XBARE = ' 1 ').
All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a '1' indicates a digital input, and a ' 0 ' indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 14.4 for the PnMDIN register details.

Important Note: Port 0 and Port 1 pins are 5.25 V tolerant across the operating range of $\mathrm{V}_{\text {REGIN }}$.
The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the $X B R n$ registers, and is not automatic. When the WEAKPUD bit in XBR1 is ' 0 ', a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a ' 0 ' and for pins configured for analog input mode to avoid unnecessary power dissipation.

Registers XBRO and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to ' 1 ' enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 14.1. XBR0: Port I/O Crossbar Register 0

SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1

14.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports P0-P1 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

C8051F52x/F52xA/F53x/F53xA

In addition to performing general purpose I/O, P0 and P1 can generate a port match event if the logic levels of the Port's input pins match a software controlled value. A port match event is generated if (PO \& POMASK) does not equal (POMATCH \& POMASK) or if (P1 \& P1MASK) does not equal (P1MATCH \& P1MASK). This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings. A port match event can cause an interrupt if EMAT (EIE2.1) is set to '1' or cause the internal oscillator to awaken from SUSPEND mode. See Section "15.1.1. Internal Oscillator Suspend Mode" on page 136 for more information.

SFR Definition 14.3. P0: Port0

R/W	$\begin{aligned} & \text { Reset Value } \\ & 111111111 \end{aligned}$							
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	$\begin{array}{cc} \text { Bit0 } & \text { Bit } \\ \text { Addressable } \\ \text { SFR Address: } 0 \times 80 \end{array}$	
Bits7-0:	[7:0] - Ou ogic L ogic H ad - Al when O.n pin O.n pi	appear utput. utput reads gured gic low gic hig	I/O pin imped selected ital inp	Cros if corr analo	Regist nding ut in re	DOUT. POM	$=0) .$ Direc	ads Port

SFR Definition 14.4. POMDIN: Port0 Input Mode

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bits7-0: Analog Input Configuration Bits for P0.7-P0.0 (respectively). Port pins configured as analog inputs have their weak pullup, digital driver, and digital receiver disabled.
0 : Corresponding P0.n pin is configured as an analog input.
1: Corresponding P0.n pin is not configured as an analog input.

SFR Definition 14.5. POMDOUT: Port0 Output Mode

Bits7-0: Output Configuration Bits for P0.7-P0.0 (respectively): ignored if corresponding bit in register POMDIN is logic 0.
0: Corresponding P0.n Output is open-drain.
1: Corresponding P0.n Output is push-pull.
*Note: When SDA and SCL appear on any of the Port I/O, each are open-drain regardless of the value of POMDOUT.

SFR Definition 14.6. POSKIP: Port0 Skip

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0xD4

Bits7-0: P0SKIP[7:0]: Port0 Crossbar Skip Enable Bits.
These bits select Port pins to be skipped by the Crossbar Decoder. Port pins used as analog inputs (for ADC or Comparator) or used as special functions ($\mathrm{V}_{\text {REF }}$ input, external oscillator circuit, CNVSTR input) should be skipped by the Crossbar.
0: Corresponding P0.n pin is not skipped by the Crossbar.
1: Corresponding P0.n pin is skipped by the Crossbar.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 14.7. POMAT: Port0 Match

R/W	Reset Value							
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0xD7

Bits7-0: POMAT[7:0]: Port0 Match Value.
These bits control the value that unmasked P0 Port pins are compared against. A Port Match event is generated if (PO \& POMASK) does not equal (POMAT \& POMASK).

SFR Definition 14.8. POMASK: Port0 Mask

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0xC7

Bits7-0: POMASK[7:0]: Port0 Mask Value.
These bits select which Port pins will be compared to the value stored in POMAT.
0 : Corresponding P0.n pin is ignored and cannot cause a Port Match event.
1: Corresponding PO.n pin is compared to the corresponding bit in POMAT.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 14.9. P1: Port1

R/W	Reset Value							
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	$\begin{aligned} & \text { Bit0 } \\ & \text { R Addr } \end{aligned}$	Bit Addressable 0×90
Bits7-0:	[7:0] - Ou ogic L ogic H ad - Al when 1.n pi 1.n pi	appear utput. utput reads gured gic low. gic hig	I/O pin imped selected gital inp	Cros if corr analo		DOUT. P1M	= 0). Direct	ads Port

SFR Definition 14.10. P1MDIN: Port1 Input Mode

R/W	Reset Value11111111							
Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
						SFR Address: $0 \times \mathrm{FF} 2$		
Bits7-0: Analog Input Configuration Bits for P1.7-P1.0 (respectively). Port pins configured as analog inputs have their weak pullup, digital driver, and digital receiver disabled. 0 : Corresponding P1.n pin is configured as an analog input. 1: Corresponding P1.n pin is not configured as an analog input.								

SFR Definition 14.11. P1MDOUT: Port1 Output Mode

SFR Definition 14.12. P1SKIP: Port1 Skip

R/W	Reset Value							
Bit7 00000000								
	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address: 0xD5								

Bits7-0: P1SKIP[7:0]: Port1 Crossbar Skip Enable Bits.
These bits select Port pins to be skipped by the Crossbar Decoder. Port pins used as analog inputs (for ADC or Comparator) or used as special functions ($\mathrm{V}_{\mathrm{REF}}$ input, external oscillator circuit, CNVSTR input) should be skipped by the Crossbar.
0 : Corresponding P1.n pin is not skipped by the Crossbar.
1: Corresponding P1.n pin is skipped by the Crossbar.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 14.13. POSKIP: Port0 Skip

Bits7-0: P1SKIP[7:0]: Port1 Crossbar Skip Enable Bits.
These bits select Port pins to be skipped by the Crossbar Decoder. Port pins used as analog inputs (for ADC or Comparator) or used as special functions ($\mathrm{V}_{\mathrm{REF}}$ input, external oscillator circuit, CNVSTR input) should be skipped by the Crossbar.
0 : Corresponding P1.n pin is not skipped by the Crossbar.
1: Corresponding P1.n pin is skipped by the Crossbar.

SFR Definition 14.14. P1MAT: Port1 Match

R/W	$\begin{gathered} \text { Reset Value } \\ 11111111 \end{gathered}$							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	OxCF

Bits7-0: P1MAT[7:0]: Port1 Match Value.
These bits control the value that unmasked P0 Port pins are compared against. A Port Match event is generated if (P1 \& P1MASK) does not equal (P1MAT \& P1MASK).

SFR Definition 14.15. P1MASK: Port1 Mask

Bits7-0: P1MASK[7:0]: Port1 Mask Value.
These bits select which Port pins will be compared to the value stored in P1MAT.
0 : Corresponding P1.n pin is ignored and cannot cause a Port Match event.
1: Corresponding P1.n pin is compared to the corresponding bit in P1MAT.

C8051F52x/F52xA/F53x/F53xA

Table 14.1. Port I/O DC Electrical Characteristics
$\mathrm{V}_{\text {REGIN }}=2.7$ to $5.25 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified

Parameters	Conditions	Min	Typ	Max	Units
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, Port I/O push-pull $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$, Port I/O push-pull $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$, Port I/O push-pull	$\begin{gathered} \hline \mathrm{V}_{\text {REGIN }}-0.4 \\ \mathrm{~V}_{\text {REGIN }}-0.02 \end{gathered}$	$\begin{gathered} - \\ - \\ \mathrm{V}_{\text {REGIN }}-0.7 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	V
Output Low Voltage	$\begin{array}{rl} \mathrm{v}_{\text {REGIN }} & =1.8 \mathrm{~V}: \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =8.5 \mathrm{~mA} \\ \mathrm{v}_{\text {REGIN }} & =2.7 \mathrm{v}: \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & 8.5 \mathrm{~mA} \\ \mathrm{v}_{\text {REGIN }} & =5.25 \mathrm{v}: \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =8.5 \mathrm{~mA} \end{array}$		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 50 \\ 750 \\ 45 \\ 550 \\ \\ 40 \\ 400 \end{gathered}$	mV
Input High Voltage		$\mathrm{V}_{\text {REGIN }} \times 0.65$	-	-	V
Input Low Voltage		-	-	$\mathrm{V}_{\text {REGIN }} \times 0.3$	V
Input Leakage Current	Weak Pullup Off C8051F52xA/53xA: Weak Pullup On, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REGIN}}=1.8 \mathrm{~V}$ C8051F52x/52xA/53x/53xA: Weak Pullup On, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{REGIN}}=2.7 \mathrm{~V}$ Weak Pullup On, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{V}_{\text {REGIN }}=5.25 \mathrm{~V}$		<5 $\begin{aligned} & <20 \\ & <65 \end{aligned}$	± 2 TBD 50 115	$\mu \mathrm{A}$

C8051F52x/F52xA/F53x/F53xA

15. Oscillators

C8051F52x/F52xA/F53x/F53xA devices include a programmable internal oscillator, an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 15.1. The system clock (SYSCLK) can be derived from the internal oscillator, external oscillator circuit. Oscillator electrical specifications are given in Table 15.1 on page 145.

Figure 15.1. Oscillator Diagram

15.1. Programmable Internal Oscillator

All C8051F52x/53x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL and OSCIFIN registers, shown in SFR Definition 15.2 and SFR Definition 15.3. On C8051F52x/53x devices, OSCICL and OSCIFIN are factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 15.1 on page 145. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, 8, 16, 32, 64, or 128 as defined by the IFCN bits in register OSCICN. The divide value defaults to 128 following a reset.

C8051F52x/F52xA/F53x/F53xA

15.1.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Comparator 0 enabled and output is logic 0 .

When one of the internal oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 15.1. OSCICN: Internal Oscillator Control

R/W	R/W	R/W	R	R	R/W	R/W	R/W	Reset Value
IOSCEN1	IOSCEN0	SUSPEND	IFRDY	-	IFCN2	IFCN1	IFCN0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	$\begin{gathered} \text { Bit0 } \\ \text { FR Addres } \end{gathered}$	$0 \times B 2$
Bits7-6:	IOSCEN[1:0]: Internal Oscillator Enable Bits. 00: Oscillator Disabled. 01: Reserved. 10: Reserved. 11: Oscillator Enabled in Normal Mode and Disabled in Suspend							
Bit5:	SUSPEND: Internal Oscillator Suspend Enable Bit. Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The internal oscillator resumes operation when one of the SUSPEND mode awakening events occur.							
Bit4:	IFRDY: Internal Oscillator Frequency Ready Flag. 0 : Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency.							
Bit3: Bits2-0:	UNUSED. R IFCN2-0: In 000: SYSCL 001: SYSCL 010: SYSCL 011: SYSCL 100: SYSCL 101: SYSCL 110: SYSCL 111: SYSCL	ead $=0 \mathrm{~b}, \mathrm{~W}$ ternal Oscilla K derived from K derived from K derived from K derived from	te $=$ don or Frequ Intern Intern Intern Interna Intern Intern Interna Interna	e.		8 (defa		

C8051F52x/F52xA/F53x/F53xA

SFR Definition 15.2. OSCICL: Internal Oscillator Calibration

R	R/W	Reset Value						
-	OSCICL							Varies
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
						SFR Address: 0xB3		
Bit7: Bits6-0:	UNUSED. Read = Ob. Write = don't care. OSCICL: Internal Oscillator Calibration Register. This register determines the internal oscillator period. On C8051F52x/53x devices, the reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz .							

SFR Definition 15.3. OSCIFIN: Internal Fine Oscillator Calibration

| R/W | R/W | R/W | R | R | R/W | R/W | R/W | Reset Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | | | OSCIFIN | | | undetermined | |
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | Bit Addressable |
| | | | | | | SFR Address: $0 \times$ B0 | | |

Bits7-6: UNUSED. Read $=00 b$, Write $=$ don't care.
Bits5-0: OSCIFIN. Internal oscillator fine adjustment bits.
The valid range is between 0×00 and 0×27.

This register is a fine adjustment for the internal oscillator period. On C8051F52x/52xA/53x/53xA devices, the reset value is factory calibrated to generate an

C8051F52x/F52xA/F53x/F53xA

15.2. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 15.1. A $10 \mathrm{M} \Omega$ resistor also must be wired across the XTAL1 and XTAL2 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 15.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 15.4. OSCXCN: External Oscillator Control).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.7 and P1.0 ('F53x/'F53xA) or P0.2 and P0.3 ('F52x/'F52xA) are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P1.0 ('F53x/'F53xA) or P0.3 ('F52x/'F52xA) is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "14.1. Priority Crossbar Decoder" on page 120 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs. In CMOS clock mode, the associated pin should be configured as a digital input. See Section "14.2. Port I/O Initialization" on page 125 for details on Port input mode selection.

15.2.1. Clocking Timers Directly Through the External Oscillator

The external oscillator source divided by eight is a clock option for the timers (Section "19. Timers" on page 184) and the Programmable Counter Array (PCA) (Section "20. Programmable Counter Array (PCA0)" on page 197). When the external oscillator is used to clock these peripherals, but is not used as the system clock, the external oscillator frequency must be less than or equal to the system clock frequency. In this configuration, the clock supplied to the peripheral (external oscillator / 8) is synchronized with the system clock; the jitter associated with this synchronization is limited to ± 0.5 system clock cycles.

15.2.2. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 15.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 15.4. For example, a 12 MHz crystal requires an XFCN setting of 111b.

C8051F52x/F52xA/F53x/F53xA

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

Step 1. Configure XTAL1 and XTAL2 pins by writing ' 1 ' to the port latch.
Step 2. Configure XTAL1 and XTAL2 as analog inputs.
Step 3. Enable the external oscillator.
Step 4. Wait at least 1 ms .
Step 5. Poll for XTLVLD => '1'.
Step 6. Switch the system clock to the external oscillator.
Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal data sheet when completing these calculations.

The equation for determining the load capacitance for two capacitors is:

$$
C_{L}=\frac{C_{A} \times C_{B}}{C_{A}+C_{B}}+C_{S}
$$

Where:
C_{A} and C_{B} are the capacitors connected to the crystal leads.
C_{S} is the total stray capacitance of the PCB.
The stray capacitance for a typical layout where the crystal is as close as possible to the pins is 2-5 pF per pin.

If C_{A} and C_{B} are the same (C), then the equation becomes:

$$
C_{L}=\frac{C}{2}+C_{S}
$$

For example, a tuning-fork crystal of 32 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 15.1, Option 1. With a stray capacitance of 3 pF per pin (6 pF total), the 13 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 15.2.

C8051F52x/F52xA/F53x/F53xA

Figure 15.2. 32 kHz External Crystal Example
Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

C8051F52x/F52xA/F53x/F53xA

15.2.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 15.1, Option 2. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz , let $\mathrm{R}=246 \mathrm{k} \Omega$ and $\mathrm{C}=50 \mathrm{pF}$:
$\mathrm{f}=1.23\left(10^{3}\right) / \mathrm{RC}=1.23\left(10^{3}\right) /[246 \times 50]=0.1 \mathrm{MHz}=100 \mathrm{kHz}$
Referring to the table in SFR Definition 15.4, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at a slightly increased external oscillator supply current.

15.2.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 15.1, Option 3. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the frequency of oscillation and calculate the capacitance to be used from the equations below. Assume $V_{D D}=2.1 \mathrm{~V}$ and $\mathrm{f}=75 \mathrm{kHz}$:
$\mathrm{f}=\mathrm{KF} /\left(\mathrm{C} \times \mathrm{V}_{\mathrm{DD}}\right)$
$0.075 \mathrm{MHz}=\mathrm{KF} /(\mathrm{C} \times 2.1)$
Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 15.4 as $K F=7.7$:
$0.075 \mathrm{MHz}=7.7 /(\mathrm{C} \times 2.1)$
$\mathrm{C} \times 2.1=7.7 / 0.075 \mathrm{MHz}$
$\mathrm{C}=102.6 / 2.0 \mathrm{pF}=51.3 \mathrm{pF}$
Therefore, the XFCN value to use in this example is 010 b .

C8051F52x/F52xA/F53x/F53xA

SFR Definition 15.4. OSCXCN: External Oscillator Control

Crystal Mode (Circuit from Figure 15.1, Option 1; XOSCMD = 11x)
Choose XFCN value to match crystal or resonator frequency.
RC Mode (Circuit from Figure 15.1, Option 2; XOSCMD = 10x)
Choose XFCN value to match frequency range:
$f=1.23\left(10^{3}\right) /(R \times C)$, where
$\mathrm{f}=$ frequency of clock in MHz
$\mathrm{C}=$ capacitor value in pF
$\mathrm{R}=$ Pullup resistor value in $\mathrm{k} \Omega$
C Mode (Circuit from Figure 15.1, Option 3; XOSCMD = 10x)
Choose K Factor (KF) for the oscillation frequency desired:
$\mathbf{f}=\mathrm{KF} /\left(\mathbf{C} \times \mathrm{V}_{\mathrm{DD}}\right)$, where
$\mathrm{f}=$ frequency of clock in MHz
$\mathrm{C}=$ capacitor value the XTAL2 pin in pF
$V_{D D}=$ Power Supply on MCU in volts

C8051F52x/F52xA/F53x/F53xA

15.3. System Clock Selection

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to ' 1 ' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD in crystal mode, the software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no startup time.

The CLKSL bit in register CLKSEL selects which oscillator source is used as the system clock. CLKSL must be set to ' 1 ' for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when another oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator and external oscillator, as long as the selected clock source is enabled and has settled.

SFR Definition 15.5. CLKSEL: Clock Select

C8051F52x/F52xA/F53x/F53xA

Table 15.1. Oscillator Electrical Characteristics
$V_{D D}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency	IFCN = 11b	24.5-0.5\%	24.5*	$24.5+0.5 \%$	MHz
Oscillator Supply Current (from $V_{D D}$)	Internal Oscillator On OSCICN[7:6] = 11b	-	800	TBD	$\mu \mathrm{A}$
	Internal Oscillator Suspend $\begin{aligned} & \text { OSCICN }[7: 6]=00 \mathrm{~b} \\ & \text { ZTCEN }=1 \end{aligned}$	-	50	TBD	
Wake-Up Time From Suspend	$\begin{aligned} & \text { OSCICN[7:6] = 00b } \\ & \text { ZTCEN }=0 \end{aligned}$	-	1	-	$\mu \mathrm{s}$
	$\begin{aligned} & \text { OSCICN[7:6] = 00b } \\ & \text { ZTCEN }=1 \end{aligned}$	-	5	-	Instruction Cycles
*Note: This is the average frequency across the operating temperature range.					

C8051F52x/F52xA/F53x/F53xA

16. UARTO

UARTO is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "16.1. Enhanced Baud Rate Generation" on page 147). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte. (Please refer to Section " 21 . Device Specific Behavior" on page 213 for more information on the pins associated with the UART interface.)

UART0 has two associated SFRs: Serial Control Register 0 (SCONO) and Serial Data Buffer 0 (SBUF0). The single SBUFO location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UARTO interrupts enabled, an interrupt is generated each time a transmit is completed (TIO is set in SCONO), or a data byte has been received (RIO is set in SCONO). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 16.1. UARTO Block Diagram

C8051F52x/F52xA/F53x/F53xA

16.1. Enhanced Baud Rate Generation

The UARTO baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 16.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1
UART

Figure 16.2. UARTO Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 186). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. The UART0 baud rate is determined by Equation 16.1-A and Equation 16.1-B.

> A) UartBaudRate $=\frac{1}{2} \times$ T1_Overflow_Rate
> B) T1_Overflow_Rate $=\frac{T 1_{C L K}}{256-\mathrm{TH} 1}$

Equation 16.1. UARTO Baud Rate

Where ${ }^{11}{ }_{C L K}$ is the frequency of the clock supplied to Timer 1, and $T 1 H$ is the high byte of Timer 1 (8-bit auto-reload mode reload value). Timer 1 clock frequency is selected as described in Section "19. Timers" on page 184. A quick reference for typical baud rates and system clock frequencies is given in Table 16.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

C8051F52x/F52xA/F53x/F53xA

16.2. Operational Modes

UARTO provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the SOMODE bit (SCON0.7). Typical UART connection options are shown below.

Figure 16.3. UART Interconnect Diagram

16.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TIO Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCONO.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: RIO must be logic 0 , and if MCEO is logic 1, the stop bit must be logic 1 . In the event of a receive data overrun, the first received 8 bits are latched into the SBUFO receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RIO flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set. An interrupt will occur if enabled when either TIO or RIO is set.

Figure 16.4. 8-Bit UART Timing Diagram

C8051F52x/F52xA/F53x/F53xA

16.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TIO Transmit Interrupt Flag (SCONO.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCON0.4) is set to ' 1 '. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: (1) RIO must be logic 0 , and (2) if MCEO is logic 1, the 9 th bit must be logic 1 (when MCEO is logic 0 , the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUFO, the ninth bit is stored in RB80, and the RIO flag is set to ' 1 '. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set to ' 1 '. A UART0 interrupt will occur if enabled when either TIO or RIO is set to ' 1 '.

Figure 16.5. 9-Bit UART Timing Diagram

16.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1 ; in a data byte, the ninth bit is always set to logic 0 .

Setting the MCEO bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCEO bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCEO bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

C8051F52x/F52xA/F53x/F53xA

Figure 16.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 16.1. SCON0: Serial Port 0 Control

R/w	R	R/W	R/W	R/W	R/W	R/W	R/W	eset Valu
SOMODE		MCEO	RENO	TB80	RB80	TIO	RIO	01000000
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	Bit
						SFR Address: 0x98		
Bit7:	SOMODE: Serial Port 0 Operation Mode.							
	This bit selects the UARTO Operation Mode.							
	0: 8-bit UART with Variable Baud Rate.							
	1: 9-bit UART with Variable Baud Rate.							
Bit6:	UNUSED. Read = 1b. Write = don't care.							
Bit5:	MCEO: Multiprocessor Communication Enable.							
	The function of this bit is dependent on the Serial Port 0 Operation Mode.							
	SOMODE $=0$: Checks for valid stop bit.							
	0 : Logic level of stop bit is ignored.							
	1: RI0 will only be activated if stop bit is logic level 1.							
	SOMODE = 1: Multiprocessor Communications Enable.							
	0 : Logic level of ninth bit is ignored.							
	1: RIO is set and an interrupt is generated only when the ninth bit is logic 1.							
Bit4:	RENO: R	e Enable.						
	This bit	es/disab	the UAR	ceiver.				
	0 : UARTO	eption di	led.					
	1: UARTO	eption e						
Bit3:	TB80: Ninth Transmission Bit.							
	The logic is not us	of this 8-bit UA	will be as Mode.	ned to th or clea	inth tra by soft	ssion as re		T Mode. It
Bit2:	RB80: Ninth Receive Bit.							
	RB80 is assigned the value of the STOP bit in Mode 0 ; it is assigned the value of the 9th data bit in Mode 1.							
Bit1:	TIO: Transmit Interrupt Flag.							
	Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in 8bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UARTO interrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.							
Bit0:	R10: Receive Interrupt Flag.							
	Set to ' 1 ' by hardware when a byte of data has been received by UARTO (set at the STOP bit sampling time). When the UARTO interrupt is enabled, setting this bit to ' 1 ' causes the CPU							

SFR Definition 16.2. SBUF0: Serial (UART0) Port Data Buffer

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0×99

Bits7-0: SBUF0[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB)
This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUFO initiates the transmission. A read of SBUFO returns the contents of the receive latch.

C8051F52x/F52xA/F53x/F53xA

Table 16.1. Timer Settings for Standard Baud Rates
Using the Internal Oscillator

	Frequency: 24.5 MHz						
	Target Baud Rate (bps)	Baud Rate \% Error	Oscillator Divide Factor	Timer Clock Source	$\begin{gathered} \hline \text { SCA1-SCA0 } \\ \text { (pre-scale } \\ \text { select)* } \\ \hline \end{gathered}$	T1M*	Timer 1 Reload Value (hex)
	230400	-0.32\%	106	SYSCLK	XX	1	0xCB
	115200	-0.32\%	212	SYSCLK	XX	1	0x96
	57600	0.15\%	426	SYSCLK	XX	1	0x2B
	28800	-0.32\%	848	SYSCLK / 4	01	0	0x96
	14400	0.15\%	1704	SYSCLK / 12	00	0	0xB9
	9600	-0.32\%	2544	SYSCLK / 12	00	0	0×96
	2400	-0.32\%	10176	SYSCLK / 48	10	0	0x96
	1200	0.15\%	20448	SYSCLK / 48	10	0	0x2B

*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 19.1.

C8051F50x

17. LIN (C8051F520/0A/3/3A/6/6A and C8051F530/0A/3/3A/6/6A)

Important Note: This chapter assumes an understanding of the Local Interconnect Network (LIN) protocol. For more information about the LIN protocol, including specifications, please refer to the LIN consortium (http://www.lin-subbus.org/).

LIN is an asynchronous, serial communications interface used primarily in automotive networks. The Silicon Laboratories LIN controller is compilant to the 2.0 Specification, implements a complete hardware LIN interface, and includes the following features:

- Selectable Master and Slave modes.
- Automatic baud rate option in slave mode
- The internal oscillator is accurate to within 0.5% of 24.5 MHz across the entire supply voltage and temperature range, and so external oscillator is not necessary for master mode operation.

Note: The minimum system clock (SYSCLK) required when using the LIN peripheral is 8 MHz .

Figure 17.1. LIN Block Diagram
The LIN peripheral has four main components:

1. LIN Access Registers - Provide the interface between the MCU core and the LIN peripheral.
2. LIN Data Registers - Where transmitted and received message data bytes are stored.
3. LIN Control Registers - Control the functionality of the LIN interface.
4. Control State Machine and Bit Streaming Logic - Contains the hardware that serializes messages and controls the bus timing of the controller.

SILICON LABS

17.1. Software Interface with the LIN Peripheral

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LINO Control Mode (LINOCF) register. The other LIN registers are accessed indirectly through the two SFRs LINO Address (LINADDR) and LINO Data (LINDATA). The LINADDR register selects which LIN register is targeted by reads/writes of the LINDATA register. The full list of indirectly-accessible LIN register is given in Table 17.4 on page 163.

17.2. LIN Interface Setup and Operation

The hardware based LIN peripheral allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the peripheral is to define the basic characteristics of the node:

- Mode - Master or Slave
- Baud Rate - Either defined manually or using the autobaud feature (slave mode only).
- Checksum Type - Select between classic or enhanced checksum, both of which are implemented in hardware.

17.2.1. Mode Definition

Following the LIN specification, the peripheral implements both the Slave and Master operating modes in hardware. The mode is configured using the MODE bit (LINOCF.6).

17.2.2. Baud Rate Options: Manual or Autobaud

The LIN peripheral can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LINOCF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

17.2.3. Baud Rate Calculations - Manual Mode

The baud rate used by the peripheral is a function of the System Clock (SYSCLK) and the bit-timing Registers according to the following equation:

$$
\text { baud_rate }=\frac{\text { SYSCLK }}{2^{(\text {prescaler +1) }} \times \text { divider } \times(\text { multiplier }+1)}
$$

The prescaler, divider and multiplier factors are part of the LINODIV and LINOMUL registers and can assume values in the following range:

Table 17.1. Baud-Rate Calculation Variable Ranges

Factor	Range
prescaler	$0 \ldots 3$
multiplier	$0 \ldots 31$
divider	$200 \ldots 511$

Important: The minimum system clock (SYSCLK) to operate the LIN peripheral is 8 MHz .
Use the following equations to calculate the values for the variables for the baud-rate equation:

$$
\begin{gathered}
\text { multiplier }=\frac{20000}{\text { baud_rate }}-1 \\
\text { prescaler }=\ln \left[\frac{\text { SYSCLK }}{(\text { multiplier }+1) \times \text { baud_rate } \times 200}\right] \times \frac{1}{\ln 2}-1
\end{gathered}
$$

$$
\text { divider }=\frac{\text { SYSCLK }}{\left(2^{(\text {prescaler }+1)} \times \text { multiplier } \times \text { baud_rate }\right)}
$$

It is important to note that in all these equations, the results must be rounded down to the nearest integer.
The following example shows the steps for calculating the baud rate values for a Master node running at 24.5 MHz and communicating at 19200 bits/sec. First, calculate the multiplier:

$$
\text { multiplier }=\frac{20000}{19200}-1=0.0417 \cong 0
$$

Next, calculate the prescaler:

$$
\text { prescaler }=\ln \frac{24500000}{(0+1) \times 19200 \times 200} \times \frac{1}{\ln 2}-1=1.674 \cong 1
$$

Finally, calculate the divider:

$$
\text { divider }=\frac{24500000}{2^{(1+1)} \times(0+1) \times 19200}=319.010 \cong 319
$$

These values lead to the following baud rate:

$$
\text { baud_rate }=\frac{24500000}{2^{(1+1)} \times(0+1) \times 319} \cong 19200.63
$$

The following code programs the interface in Master mode, using the Enhanced Checksum and enables the interface to operate at 19200 bits/sec using a 24 MHz system clock.

```
LIN0CF = 0x80;// Activate the interface
LIN0CF |= 0x40;// Set the node as a Master
LINADDR = 0x0D;// Point to the LIN0MUL register
// Initialize the register (prescaler, multiplier and bit 8 of divider)
LINDATA = ( 0x01 << 6 ) + ( 0x00 << 1 ) + ( ( 0x13F & 0x0100 ) >> 8 );
LINADDR = 0x0C;// Point to the LIN0DIV register
LINDATA = (unsigned char)_0x13F;// Initialize LIN0DIV
LINADDR = 0x0B;// Point to the LIN0SIZE register
LINDATA |= 0x80;// Initialize the checksum as Enhanced
LINADDR = 0x08;// Point to LIN0CTRL register
LINDATA = 0xC0; // Reset any error and the interrupt
```

Table 17.2 includes the configuration values required for the typical system clocks and baud rates:

Table 17.2. Manual Baud Rate Parameters Examples

	Baud (bits / sec)														
	20 K			19.2 K			9.6 K			4.8 K			1 K		
$\begin{aligned} & \hline \text { SYSCLK } \\ & \text { (MHz) } \end{aligned}$	$\frac{ \pm}{\vdots}$		$\dot{\vdots}$	$\frac{ \pm}{5}$	$\begin{aligned} & \dot{0} \\ & \text { 0ٍ } \\ & \hline \end{aligned}$	$\dot{\square}$	$\frac{ \pm}{\Sigma}$	$\begin{aligned} & \dot{0} \\ & \text { Dỉ } \\ & \hline \end{aligned}$	立	$\frac{ \pm}{\Sigma}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{2} \end{aligned}$	$\dot{\Delta}$	$\frac{ \pm}{\Sigma}$	$\begin{aligned} & \dot{0} \\ & \text { む̀ } \\ & \hline \end{aligned}$	B̀
25	0	1	312	0	1	325	1	1	325	3	1	325	19	1	312
24.5	0	1	306	0	1	319	1	1	319	3	1	319	19	1	306
24	0	1	300	0	1	312	1	1	312	3	1	312	19	1	300
22.1184	0	1	276	0	1	288	1	1	288	3	1	288	19	1	276
16	0	1	200	0	1	208	1	1	208	3	1	208	19	1	200
12.25	0	0	306	0	0	319	1	0	319	3	0	319	19	0	306
12	0	0	300	0	0	312	1	0	312	3	0	312	19	0	300
11.0592	0	0	276	0	0	288	1	0	288	3	0	288	19	0	276
8	0	0	200	0	0	208	1	0	208	3	0	208	19	0	200

17.2.4. Baud Rate Calculations - Automatic Mode

If the LIN peripheral is configured for slave mode, only the prescaler and divider need to be calculated:

C8051F50x

$$
\begin{gathered}
\text { prescaler }=\ln \left[\frac{S Y S C L K}{4000000}\right] \times \frac{1}{\ln 2}-1 \\
\text { divider }
\end{gathered}=\frac{\text { SYSCLK }}{2^{(\text {prescaler }+1)} \times 20000}
$$

The following example calculates the values of these variables for a 24 MHz system clock:

$$
\begin{gathered}
\text { prescaler }=\ln \left[\frac{24500000}{4000000}\right] \times \frac{1}{\ln 2}-1=1.615 \cong 1 \\
\text { divider }=\frac{24500000}{2^{(1+1)} \times 20000}=306.25 \cong 306
\end{gathered}
$$

Table 17.3 presents some typical values of system clock and baud rate along with their factors.

Table 17.3. Autobaud Parameters Examples

System Clock (MHz)	Prescaler	Divider
25	1	312
24.5	1	306
24	1	300
22.1184	1	276
16	1	200
12.25	0	306
12	0	300
11.0592	0	276
8		200

17.3. LIN Master Mode Operation

The master node is responsible for the scheduling of messages and sends the header of each frame, containing the SYNCH BREAK FIELD, SYNCH FIELD and IDENTIFIER FIELD. The steps to schedule a message transmission or reception are listed below.

1. Load the 6-bit Identifier into the LINOID register.
2. Load the data length into the LINOSIZE register. Set the value to the number of data bytes or "1111b" if the data length should be decoded from the identifier. Also, set the checksum type, classic or enhanced, in the same LINOSIZE register.

C8051F50x

3. Set the data direction by setting the TXRX bit (LINOCTRL.5). Set the bit to 1 to perform a master transmit operation, or set the bit to 0 to perform a master receive operation.
4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LIN0DT1 to LIN0DT8).
5. Set the STREQ bit (LINOCTRL.0) to start the message transfer. The LIN peripheral will schedule the message frame and request an interrupt if the message transfer is successfully completed or if an error has occurred.
This code segment shows the procedure to schedule a message in a transmission operation:
```
LINADDR = 0x08;// Point to LIN0CTRL
LINDATA |= 0x20;// Select to transmit data
LINADDR = 0x0E;// Point to LIN0ID
LINDATA = 0x11;// Load the ID, in this example 0x11
LINADDR = 0x0B;// Point to LIN0SIZE
LINDATA = ( LINDATA & 0xF0 ) | 0x08; // Load the size with 8
LINADDR = 0x00;// Point to Data buffer first byte
for (i=0; i<8; i++)
{
    LINDATA = i + 0x41;// Load the buffer with 'A', 'B', ...
    LINADDR++;// Increment the address to the next buffer
}
LINADDR = 0x08;// Point to LIN0CTRL
LINDATA = 0x01;// Start Request
```

The application should perform the following steps when an interrupt is requested.

1. Check the DONE bit (LINOST.0) and the ERROR bit (LINOST.2).
2. If performing a master receive operation and the transfer was successful, read the received data from the data buffer.
3. If the transfer was not successful, check the error register to determine the kind of error. Further error handling has to be done by the application.
4. Set the RSTINT (LINOCTRL.3) and RSTERR bits (LINOCTRL.2) to reset the interrupt request and the error flags.

17.4. LIN Slave Mode Operation

When the device is configured for slave mode operation, it must wait for a command from a master node. Access from the firmware to data buffer and ID registers of the LIN peripheral is only possible when a data request is pending (DTREQ bit (LINOST.4) is '1') and also when the LIN bus is not active (ACTIVE bit (LINOST.7) is set to '0').

The LIN peripheral in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN peripheral configured for slave mode will generated an interrupt in one of three situations:

1. After the reception of the IDENTIFIER FIELD.
2. When an error is detected.
3. When the message transfer is completed.

C8051F50x

The application should perform the following steps when an interrupt is detected:

1. Check the status of the DTREQ bit (LINOST.4). This bit is set when the IDENTIFIER FIELD has been received.
2. If DTREQ (LINOST.4) is set, read the identifier from LINOID and process it. If DTREQ (LINOST.4) is not set, continue to step 7.
3. Set the TXRX bit (LINOCTRL.5) to ' 1 ' if the current frame is a transmit operation for the slave and set to '0' if the current frame is a receive operation for the slave.
4. Load the data length into LINOSIZE.
5. For a slave transmit operation, load the data to transmit into the data buffer.
6. Set the DTACK bit (LINOCTRL.4). Continue to step 10.
7. If DTREQ (LINOST.4) is not set, check the DONE bit (LINOST.0). The transmission was successful if the DONE bit is set.
8. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
9. If the transmission was not successful, check LINOERR to determine the nature of the error. Further error handling has to be done by the application.
10. Set the RSTINT (LINOCTRL.3) and RSTERR bits (LINOCTRL.2) to reset the interrupt request and the error flags.

In addition to these steps, the application should be aware of the following:

1. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the master.
2. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN peripheral will be overwritten and a timeout error will be detected in the LIN peripheral.
3. The LIN module does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a '1' to the STOP bit (LINOCTRL.7) instead of setting the DTACK (LINOCTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN peripheral stops the processing of the LIN communication until the next SYNC BREAK is received.
4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

17.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, the LIN slave node must be put into the Sleep Mode by setting the SLEEP bit (LINOCTRL.6).

If the SLEEP bit (LINOCTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LINOST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LINOCTRL.6).

C8051F50x

Sending a Wakeup signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the application has to set the WUPREQ bit (LINOCTRL.1). After successful transmission of the wakeup signal, the DONE bit (LINOST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 milliseconds. In that case, the ERROR bit (LINOST.2) and TOUT bit (LINOERR.2) are set. The application then has to decide whether or not to transmit another Wakeup signal.

All LIN nodes that detect a wakeup signal will set the WAKEUP (LINOST.1) and DONE bits (LINOST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LINOCTRL.6) in the LIN slave.

17.6. Error Detection and Handling

The LIN peripheral generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LINOERR . After that, it has to reset the error register and the ERROR bit (LINOST.2) by writing a ' 1 ' to the RSTERR bit (LINOCTRL.2). Starting a new message with the LIN peripheral selected as master or sending a Wakeup signal with the LIN peripheral selected as a master or slave is possible only if ERROR bit (LINOST.2) is set to ' 0 '.

17.7. LIN Registers

The following Special Function Registers (SFRs) are available:

17.7.1. LIN Direct Access SFR Registers Definition

> SFR Definition 17.1. LINADDR: Indirect Address Register

C8051F50x

SFR Definition 17.2. LINDATA: LIN Data Register

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
			SFR Address: 0x93					
Bit7-0:	LINDATA7-0: LIN Indirect Data Register Bits. When this register is read, it will read the contents of the LINO core register pointed to by LINADDR. When this register is written, it will write the value to the LINO core register pointed to by LINADDR.							

SFR Definition 17.3. LINCF Control Mode Register

17.7.2. LIN Indirect Access SFR Registers Definition

Table 17.4. LIN Registers* (Indirectly Addressable)

Name	Addres S	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	BitO
LINODT1	0x00	DATA1[7:0]							
LINODT2	0x01	DATA2[7:0]							
LINODT3	0x02	DATA3[7:0]							
LINODT4	0x03	DATA4[7:0]							
LINODT5	0x04	DATA5[7:0]							
LINODT6	0x05	DATA6[7:0]							
LINODT7	0x06	DATA7[7:0]							
LINODT8	0x07	DATA8[7:0]							
LINOCTRL	0×08	STOP(s)	SLEEP(s)	TXRX	DTACK(s)	RSTINT	RSTERR	WUPREQ	STREQ(m)
LINOST	0x09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE
LINOERR	0x0A				SYNCH(s)	PRTY(s)	TOUT	CHK	BITERR
LINOSIZE	0x0B	ENHCHK				LINSIZE[3:0]			
LINODIV	0x0C	DIVLSB[7:0]							
LINOMUL	0x0D	PRESCL[1:0]		LINMUL[4:0]					DIV9
LINOID	0x0E			ID[5:0]					

*These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

SFR Definition 17.4. LINODT1: LINO Data Byte 1

C8051F50x

SFR Definition 17.5. LINODT2: LIN0 Data Byte 2

SFR Definition 17.6. LINODT3: LIN0 Data Byte 3

R/W	Reset Value							
Bit7								
	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address	0×02 (indirect)

Bit7-0: LINODT3: LIN Data Byte 3.
Serial Data Byte 3 that is received or transmitted across the LIN interface.

SFR Definition 17.7. LINODT4: LIN0 Data Byte 4

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0×03 (indirect)

Bit7-0: LINODT4: LIN Data Byte 4.
Serial Data Byte 4 that is received or transmitted across the LIN interface.

SFR Definition 17.8. LINODT5: LIN0 Data Byte 5

C8051F50x

SFR Definition 17.9. LINODT6: LINO Data Byte 6

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0×05 (indirect)
Bit7-0:	LINODT6: LIN Data Byte 6.							

SFR Definition 17.10. LINODT7: LIN0 Data Byte 7

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0×06 (indirect)
Bit7-0:	LIN0DT7: LIN Data Byte 7.							

SFR Definition 17.11. LIN0DT8: LIN0 Data Byte 8

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address:	0×07 (indirect)
Bit7-0:	DT8 al Da	Data 8 th	ceive	ansm	acros	IIN in		

SFR Definition 17.12. LINOCTRL: LINO Control Register

w	w	w	R/W	R/W	R/W	R/W	R/W	Reset Value00000000
STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addre	(0 08
Bit7:	STOP: Stop Communication Processing Bit (slave mode only). This bit is to be set by the application to block the processing of the LIN Communications until the next SYNCH BREAK signal. It is used when the application is handling a data request interrupt and cannot use the frame content with the received identifier (always reads '0').							
Bit6:	SLEEP: Sleep Mode Warning. This bit is to be set by the application to warn the peripheral that a Sleep Mode Frame was received and that the Bus is in sleep mode or if a Bus Idle timeout interrupt is requested. The application must reset it when a Wake-Up interrupt is requested.							
Bit5:	TXRX: Transmit/Receive Selection Bit. This bit determines if the current frame is a transmit frame or a receive frame. 0 : Current frame is a receive operation. 1: Current frame is a transmit operation.							
Bit4:	DTACK: Data acknowledge bit (slave mode only). Set to ' 1 ' after handling a data request interrupt to acknowledge the transfer. The bit will automatically be cleared to ' 0 ' by the LIN controller.							
Bit3:	RSTINT: In This bit alw 0: No effect 1: Reset th	upt Res reads NINT bit	bit. 0'. INOST.3).					
Bit2:	RSTERR: This bit alw 0: No effect 1: Reset th	Reset reads ror bits	'0'. INOST	d LINOERR				
Bit1:	Set to ' 1 ' to terminate sleep mode by sending a wakeup signal. The bit will automatically be cleared to ' 0 ' by the LIN controller.							
Bit0:	1: Start a LIN transmission. This should be set only after loading the identifier, data length and data buffer if necessary.							

SFR Definition 17.13. LINOST: LINO STATUS Register

R	R	R	R	R/W	R	R	R	Reset Value				
ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE	00000000				
Bit7	Bit5		Bit3		Bit2 Bit1		Bit0					
			Add	0x09 (indirect)								
Bit7:	ACTIVE: LIN Bus Activity Bit. 0 : No transmission activity detected on the LIN bus. 1: Transmission activity detected on the LIN bus.											
Bit6:	IDLTOUT: Bus Idle Timeout Bit (slave mode only).											
	0 : The bus has not been idle for four seconds.											
	1: No bus actite	ivity has b	en detect	for four	conds, bu	the bus is n	yet in S	ep mode.				
Bit5:	ABORT: Aborted transmission signal (slave mode only). 0 : The current transmission has not been interrupted or stopped. This bit is reset to ' 0 ' after receiving a SYNCH BREAK that does not interrupt a pending transmission.											
	1: New SYNCH BREAK detected before the end of the last transmission or the STOP bit (LINOCTRL.7) has been set.											
Bit4:	DTREQ: Data Request bit (slave mode only).											
	0 : Data identifier has not been received.											
	1: Data identifie	fier has b	n receive									
Bit3:	LININT: Interrupt Request bit.											
	0 : An interrupt is not pending. This bit is cleared by setting RSTINT (LINOCTRL.3)											
	1: There is a pending LINO interrupt.											
Bit2:	ERROR: Communication Error Bit.											
	0 : No error has been detected. This bit is cleared by setting RSTERR (LINOCTRL.2)											
	1: An error has	as been d	cted.									
Bit1:	WAKEUP: Wakeup Bit.											
	0 : A wakeup signal is not being transmitted and has not been received.											
	1: A wakeup	signal is b	ng transm	ed or has	been rece							
Bit0:	DONE: Transmission Complete Bit.											
	0 : A transmission is not in progress or has not been started. This bit is cleared at the start of a transmission.											
	1: The current transmission is complete.											

SFR Definition 17.14. LINOERR: LIN0 ERROR Register

SFR Definition 17.15. LINOSIZE: LINO Message Size Register

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
ENHCHK	-	-	-	LINSIZE[3:0]				
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
			Addre				OxOB (indirect)	
Bit7:	ENHCHK: Checksum Selection Bit.							
	0 : Use the classic, specification 1.3 compliant checksum. Checksum covers the data bytes. 1: Use the enhanced, specification 2.0 compliant checksum. Checksum covers data bytes and protected identifier.							
$\begin{aligned} & \text { Bit6-4: } \\ & \text { Bit3-0: } \end{aligned}$	UNUSED. Read = 000b. Write = don't care.							
	LINSIZE3-0: Data Field Size.							
	0000: 0 data bytes							
	0001: 1 data byte							
	0010: 2 data bytes							
	0011: 3 data bytes							
	0100: 4 data bytes							
	0101: 5 data bytes							
	0110: 6 data bytes							
	0111: 7 data bytes							
	1000: 8 data bytes							
	1001-1110: RESERVED							
	1111: Use the ID[1:0] bits (LINOID[5:4]) to determine the data length.							

SFR Definition 17.16. LINODIV: LINO Divider Register

R	R	R	R	R	R	R	R	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
								$0 \times 0 \mathrm{C}$ (indirect)
Bit7-0: DIVLSB[7:0]: LIN Baud Rate Divider Least Significant Bits. The 8 least significant bits for the baud rate divider. The 9th and most significant bit is the DIV9 bit (LINOMUL.0). The valid range for the divider is 200 to 511.								

C8051F50x

SFR Definition 17.17. LINOMUL: LINO Multiplier Register

R/W	Reset Value							
PRESCL[1:0]		LINMUL[4:0]					DIV9	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Address: $\begin{aligned} & \text { (indirect) }\end{aligned}$	
Bit7-6:	PRESCL1-0: LIN Baud Rate Prescaler Bits. These bits are the baud rate prescaler bits.							
Bit5-1:	LINMUL4-0: LIN Baud Rate Multiplier Bits.							
Bit0:	DIV9: LIN The mos The valid	Rat cant for		$\begin{aligned} & \text { nifica } \\ & \text { e div } \\ & \text { o } 511 \end{aligned}$	he 8	ignif	its are	LINODIV.

SFR Definition 17.18. LINOID: LINO ID Register

R/W	Reset Value							
		ID[5:0]						00000000
Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							$\text { Address: } \begin{aligned} & \text { (indirect) } \end{aligned}$	
$\begin{aligned} & \text { Bit7-6: } \\ & \text { Bit5-0: } \end{aligned}$	If the LINSIZE bits (LINOSIZE[3:0]) are 1111b, bits ID[5:4] are used to determine the data size and are interpreted as follows: 00: 2 bytes 01: 2 bytes 10: 4 bytes 11: 8 bytes							

C8051F52x/F52xA/F53x/F53xA

18. Enhanced Serial Peripheral Interface (SPIO)

The Serial Peripheral Interface (SPIO) provides access to a flexible, full-duplex synchronous serial bus. SPIO can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPIO in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port l/O pins can be used to select multiple slave devices in master mode.

Figure 18.1. SPI Block Diagram

C8051F52x/F52xA/F53x/F53xA

18.1. Signal Descriptions

The four signals used by SPIO (MOSI, MISO, SCK, NSS) are described below.

18.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPIO is operating as a master and an input when SPIO is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3 - and 4 -wire mode.

18.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPIO is operating as a master and an output when SPIO is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4 -wire mode as a slave that is not selected. When acting as a slave in 3 -wire mode, MISO is always driven by the MSB of the shift register.

18.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPIO generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

18.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMDO bits in the SPIOCN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPIO operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPIO is always selected in 3 -wire mode. Since no select signal is present, SPIO must be the only slave on the bus in 3 -wire mode. This is intended for point-to-point communication between a master and one slave.
2. NSSMD[1:0] $=01: 4$-Wire Slave or Multi-Master Mode: SPIO operates in 4 -wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPIO device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPIO so that multiple master devices can be used on the same SPI bus.
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPIO operates in 4 -wire mode, and NSS is enabled as an output. The setting of NSSMDO determines what logic level the NSS pin will output. This configuration should only be used when operating SPIO as a master device.

See Figure 18.2, Figure 18.3, and Figure 18.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3 -wire master or 3 -wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "14. Port Input/Output" on page 118 for general purpose port I/O and crossbar information.

C8051F52x/F52xA/F53x/F53xA

18.2. SPIO Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPIO is placed in master mode by setting the Master Enable flag (MSTEN, SPIOCN.6). Writing a byte of data to the SPIO data register (SPIODAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPIO master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPIOCN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPIO master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPIODAT.

When configured as a master, SPIO can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4 -wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=1$. In this mode, NSS is an input to the device, and is used to disable the master SPIO when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPIOCN.6) and SPIEN (SPIOCN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPIOCN. $5=1$). Mode Fault will generate an interrupt if enabled. SPIO must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 18.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. In this mode, NSS is not used and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 18.3 shows a connection diagram between a master device in 3 -wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=1$. In this mode, NSS is configured as an output pin and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMDO (SPIOCN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 18.4 shows a connection diagram for a master device in 4 -wire master mode and two slave devices.

C8051F52x/F52xA/F53x/F53xA

Figure 18.2. Multiple-Master Mode Connection Diagram

Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram

Figure 18.4. 4-Wire Single Master and Slave Mode Connection Diagram

18.3. SPIO Slave Mode Operation

When SPIO is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPIO logic counts SCK edges. When 8 bits have been shifted into the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPIODAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPIODAT. Writes to SPIODAT are double-buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

C8051F52x/F52xA/F53x/F53xA

The shift register contents are locked after the slave detects the first edge of SCK. Writes to SPIODAT that occur after the first SCK edge will be held in the TX latch until the end of the current transfer.

When configured as a slave, SPIO can be configured for 4 -wire or 3 -wire operation. The default, 4 -wire slave mode, is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=1$. In 4 -wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPIO is enabled when NSS is logic 0 , and disabled when NSS is logic 1 . The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 18.4 shows a connection diagram between two slave devices in 4 -wire slave mode and a master device.

3-wire slave mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is not a way of uniquely addressing the device in 3 -wire slave mode, SPIO must be the only slave device present on the bus. It is important to note that in 3 -wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and reenabling SPIO with the SPIEN bit. Figure 18.3 shows a connection diagram between a slave device in 3 wire slave mode and a master device.

18.4. SPIO Interrupt Sources

When SPIO interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following interrupt bits must be cleared by software.

1. The SPI Interrupt Flag, SPIF (SPIOCN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPIO modes.
2. The Write Collision Flag, WCOL (SPIOCN.6) is set to logic 1 if a write to SPIODAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPIO modes.
3. The Mode Fault Flag MODF (SPIOCN.5) is set to logic 1 when SPIO is configured as a master in multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPIOCN are set to logic 0 to disable SPIO and allow another master device to access the bus.
4. The Receive Overrun Flag RXOVRN (SPIOCN.4) is set to logic 1 when configured as a slave, and a transfer is completed while the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

C8051F52x/F52xA/F53x/F53xA

18.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPIO Configuration Register (SPIOCFG). The CKPHA bit (SPIOCFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPIOCFG.4) selects between a rising edge or a falling edge. Both master and slave devices must be configured to use the same clock phase and polarity. SPIO should be disabled (by clearing the SPIEN bit, SPIOCN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 18.5.

The SPIO Clock Rate Register (SPIOCKR) as shown in SFR Definition 18.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz , whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits $/ \mathrm{sec}$) for full-duplex operation is $1 / 10$ the system clock frequency, provided that the master issues SCK, NSS (in 4wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than $1 / 10$ the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of $1 / 4$ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 18.5. Data/Clock Timing Relationship

18.6. SPI Special Function Registers

SPIO is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPIO Bus are described in the following figures.

SFR Definition 18.1. SPIOCFG: SPIO Configuration

Bit 7: SPIBSY: SPI Busy (read only).
This bit is set to logic 1 when a SPI transfer is in progress (Master or Slave Mode).
Bit 6: MSTEN: Master Mode Enable.
0 : Disable master mode. Operate in slave mode.
1: Enable master mode. Operate as a master.
Bit 5: CKPHA: SPIO Clock Phase.
This bit controls the SPIO clock phase.
0 : Data centered on first edge of SCK period.*
1: Data centered on second edge of SCK period.*
Bit 4: CKPOL: SPIO Clock Polarity.
This bit controls the SPIO clock polarity.
0 : SCK line low in idle state.
1: SCK line high in idle state.
Bit 3: SLVSEL: Slave Selected Flag (read only).
This bit is set to logic 1 whenever the NSS pin is low indicating SPIO is the selected slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.
Bit 2: NSSIN: NSS Instantaneous Pin Input (read only).
This bit mimics the instantaneous value that is present on the NSS port pin at the time that the register is read. This input is not de-glitched.
Bit 1: SRMT: Shift Register Empty (Valid in Slave Mode, read only).
This bit will be set to logic 1 when all data has been transferred in/out of the shift register, and there is no new information available to read from the transmit buffer or write to the receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from the transmit buffer or by a transition on SCK.
NOTE: SRMT = 1 when in Master Mode.
Bit 0: RXBMT: Receive Buffer Empty (Valid in Slave Mode, read only).
This bit will be set to logic 1 when the receive buffer has been read and contains no new information. If there is new information available in the receive buffer that has not been read, this bit will return to logic 0 .
NOTE: RXBMT = 1 when in Master Mode.
*Note: See Table 18.1 for timing parameters.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 18.2. SPIOCN: SPIO Control

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 R Addres	Bit Addressable 0xF8
Bit7:	SPIF: SPIO Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPIO interrupt service routine. This bit is not automatically cleared by hardware. It must be cleared by software.							
Bit6:	WCOL: Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPIO interrupt) if a write to SPIODAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. This bit is not automatically cleared by hardware. It must be cleared by software.							
Bit5:	MODF: Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when a master mode collision is detected (NSS is low, MSTEN $=1$, and $\operatorname{NSSMD}[1: 0]=01$). This bit is not automatically cleared by hardware. It must be cleared by software.							
Bit4:	RXOVRN: Receive Overrun Flag (Slave Mode only). This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPIO shift register. This bit is not automatically cleared by hardware. It must be cleared by software.							
Bits3-2:	NSSMD1-NSSMDO: Slave Select Mode. Selects between the following NSS operation modes: (See Section "18.2. SPIO Master Mode Operation" on page 173 and Section "18.3. SPIO Slave Mode Operation" on page 174). 00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to the device. 1 x : 4 -Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMDO.							
Bit1:	TXBMT: Transmit Buffer Empty. This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1 , indicating that it is safe to write a new byte to the transmit buffer.							
Bit0:	SPIEN: SP This bit ena 0: SPI disable 1: SPI enab	Enable.	the SPI.					

C8051F52x/F52xA/F53x/F53xA

SFR Definition 18.3. SPIOCKR: SPIO Clock Rate

R/W	Reset Value							
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address: 0xA2								

Bits7-0: SCR7-SCRO: SPIO Clock Rate.
These bits determine the frequency of the SCK output when the SPIO module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPIOCKR is the 8 -bit value held in the SPIOCKR register.

$$
f_{S C K}=\frac{S Y S C L K}{2 \times(S P I 0 C K R+1)}
$$

for 0 <= SPIOCKR <= 255
Example: If SYSCLK $=2 \mathrm{MHz}$ and SPIOCKR $=0 \times 04$,

$$
\begin{aligned}
& f_{S C K}=\frac{2000000}{2 \times(4+1)} \\
& f_{S C K}=200 \mathrm{kHz}
\end{aligned}
$$

C8051F52x/F52xA/F53x/F53xA

SFR Definition 18.4. SPIODAT: SPIO Data

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
						SFR Address: 0xA3		

Bits7-0: SPIODAT: SPIO Transmit and Receive Data.
The SPIODAT register is used to transmit and receive SPIO data. Writing data to SPIODAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPIODAT returns the contents of the receive buffer.

C8051F52x/F52xA/F53x/F53xA

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 18.6. SPI Master Timing (CKPHA = 0)

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 18.7. SPI Master Timing (CKPHA = 1)

C8051F52x/F52xA/F53x/F53xA

*SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.
Figure 18.8. SPI Slave Timing (CKPHA = 0)

Figure 18.9. SPI Slave Timing (CKPHA = 1)

C8051F52x/F52xA/F53x/F53xA

Table 18.1. SPI Slave Timing Parameters

Parameter	Description	Min	Max	Units
Master Mode Timing* (See Figure 18.6 and Figure 18.7)				
$\mathrm{T}_{\text {MCKH }}$	SCK High Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MCKL }}$	SCK Low Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MIS }}$	MISO Valid to SCK Sample Edge	20	-	ns
$\mathrm{T}_{\text {MIH }}$	SCK Sample Edge to MISO Change	0	-	ns
Slave Mode Timing* (See Figure 18.8 and Figure 18.9)				
TSE	NSS Falling to First SCK Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
TSD	Last SCK Edge to NSS Rising	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SEZ }}$	NSS Falling to MISO Valid	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
T SDZ	NSS Rising to MISO High-Z	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {CKH }}$	SCK High Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {CKL }}$	SCK Low Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIS }}$	MOSI Valid to SCK Sample Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIH }}$	SCK Sample Edge to MOSI Change	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SOH }}$	SCK Shift Edge to MISO Change	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
*Note: $T_{\text {SYSCLK }}$ is equal to one period of the device system clock (SYSCLK) in ns. The maximum possible frequency of the SPI can be calculated as: Transmission: SYSCLK/2 Reception: SYSCLK/10				

C8051F52x/F52xA/F53x/F53xA

19. Timers

Each MCU includes three counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and one is a 16-bit auto-reload timer for use with other device peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offer 16 -bit and split 8 -bit timer functionality with auto-reload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:
13-bit counter/timer	16-bit timer with auto-reload
16-bit counter/timer	Two 8-bit timers with auto-reload
8-bit counter/timer with auto-reload	Two 8-bit counter/timers (Timer 0 only)

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-TOM) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 19.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator clock source divided by 8 .

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it must be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

19.1. Timer 0 and Timer 1

Each timer is implemented as a 16 -bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ETO bit in the IE register (Section "11.4. Interrupt Register Descriptions" on page 97); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section 11.4). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13 -bit counter/timers in Mode 0 . The following describes the configuration and operation of Timer 0 . However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0 .

The THO register holds the eight MSBs of the 13-bit counter/timer. TLO holds the five LSBs in bit positions TLO.4-TLO.O. The three upper bits of TLO (TLO.7-TLO.5) are indeterminate and should be masked out or ignored when reading. As the 13 -bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TFO (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

C8051F52x/F52xA/F53x/F53xA

The C/TO bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (TO) increment the timer register (Refer to Section "14.1. Priority Crossbar Decoder" on page 120 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the TOM bit (CKCON.3). When TOM is set, Timer 0 is clocked by the system clock. When TOM is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 19.3).

Setting the TRO bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or the input signal /INT0 is active as defined by bit INOPL in register IT01CF (see SFR Definition 11.5. IT01CF: INT0/INT1 Configuration). Setting GATE0 to ' 1 ' allows the timer to be controlled by the external input signal /INT0 (see Section "11.4. Interrupt Register Descriptions" on page 97), facilitating pulse width measurements.

TR0	GATE0	IINT0	Counter/Timer
0	X	X	Disabled
1	0	X	Enabled
1	1	0	Disabled
1	1	1	Enabled
$X=$ Don't Care			

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TLO and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 11.5. IT01CF: INT0/INT1 Configuration).

Figure 19.1. TO Mode 0 Block Diagram

C8051F52x/F52xA/F53x/F53xA

19.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0 , except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8 -bit counter/timers with automatic reload of the start value. TLO holds the count and THO holds the reload value. When the counter in TLO overflows from all ones to 0×00, the timer overflow flag TFO (TCON.5) is set and the counter in TLO is reloaded from THO. If Timer 0 interrupts are enabled, an interrupt will occur when the TFO flag is set. The reload value in THO is not changed. TLO must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0 . Setting the TRO bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or when the input signal /INTO is active as defined by bit INOPL in register ITO1CF (see Section "11.5. External Interrupts" on page 101 for details on the external input signals /INTO and /INT1).

Figure 19.2. TO Mode 2 Block Diagram

19.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8 -bit counter/timers held in TLO and TH0. The counter/timer in TLO is controlled using the Timer 0 control/status bits in TCON and TMOD: TRO, C/T0, GATE0 and TFO. TLO can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2 , but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and UART. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0 , 1, or 2 . To disable Timer 1, configure it for Mode 3.

Figure 19.3. TO Mode 3 Block Diagram

C8051F52x/F52xA/F53x/F53xA

SFR Definition 19.1. TCON: Timer Control

R/W	Reset Value							
TF1	TR1	TF0	TR0	IE1	IT1	IEO	ITO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable

Bit7: TF1: Timer 1 Overflow Flag.
Set by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.
0 : No Timer 1 overflow detected.
1: Timer 1 has overflowed.
Bit6: TR1: Timer 1 Run Control.
0 : Timer 1 disabled.
1: Timer 1 enabled.
Bit5: TFO: Timer 0 Overflow Flag.
Set by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.
0 : No Timer 0 overflow detected.
1: Timer 0 has overflowed.
Bit4: TR0: Timer 0 Run Control.
0 : Timer 0 disabled.
1: Timer 0 enabled.
Bit3: IE1: External Interrupt 1.
This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine if IT1 = 1 . When IT1 $=0$, this flag is set to ' 1 ' when /INT1 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 11.5. "IT01CF: INT0/INT1 Configuration" on page 102).
Bit2: IT1: Interrupt 1 Type Select.
This bit selects whether the configured /INT1 interrupt will be edge or level sensitive. /INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 11.5. "IT01CF: INTO/INT1 Configuration" on page 102).
0 : /INT1 is level triggered.
1: /INT1 is edge triggered.
Bit1: IE0: External Interrupt 0.
This flag is set by hardware when an edge/level of type defined by ITO is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine if $I T 0=1$. When ITO $=0$, this flag is set to ' 1 ' when /INTO is active as defined by bit INOPL in register IT01CF (see SFR Definition 11.5. "IT01CF: INT0/INT1 Configuration" on page 102).
Bit0: ITO: Interrupt 0 Type Select.
This bit selects whether the configured /INTO interrupt will be edge or level sensitive. /INTO is configured active low or high by the INOPL bit in register IT01CF (see SFR
Definition 11.5. "IT01CF: INTO/INT1 Configuration" on page 102).
0 : /INTO is level triggered.
1: /INTO is edge triggered.

SFR Definition 19.2. TMOD: Timer Mode

R/W									
R/W	Reset Value								
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	TOM1	T0M0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
							SFR Address: 0x89		

Bit7: GATE1: Timer 1 Gate Control.
0 : Timer 1 enabled when TR1 $=1$ irrespective of /INT1 logic level.
1: Timer 1 enabled only when TR1 = 1 AND /INT1 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 11.5. "IT01CF: INT0/INT1 Configuration" on page 102).
Bit6: C/T1: Counter/Timer 1 Select.
0 : Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4).
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1).
Bits5-4: T1M1-T1M0: Timer 1 Mode Select.
These bits select the Timer 1 operation mode.

T1M1	T1M0	Mode
0	0	Mode 0: 13 -bit counter/timer
0	1	Mode 1: 16 -bit counter/timer
1	0	Mode 2: 8 -bit counter/timer with auto-reload
1	1	Mode 3: Timer 1 inactive

Bit3: GATEO: Timer 0 Gate Control.
0 : Timer 0 enabled when TRO $=1$ irrespective of /INTO logic level.
1: Timer 0 enabled only when TRO $=1$ AND /INTO is active as defined by bit INOPL in register IT01CF (see SFR Definition 11.5. "IT01CF: INT0/INT1 Configuration" on page 102).
Bit2: C/TO: Counter/Timer Select.
0 : Timer Function: Timer 0 incremented by clock defined by TOM bit (CKCON.3).
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (TO).
Bits1-0: T0M1-T0M0: Timer 0 Mode Select.
These bits select the Timer 0 operation mode.

TOM1	TOM0	Mode
0	0	Mode 0: 13-bit counter/timer
0	1	Mode 1: 16-bit counter/timer
1	0	Mode 2: 8-bit counter/timer with auto-reload
1	1	Mode 3: Two 8-bit counter/timers

C8051F52x/F52xA/F53x/F53xA

SFR Definition 19.3. CKCON: Clock Control

R/W	Reset Value							
-	-	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit7-6: RESERVED. Read = 0b; Must write 0b.
Bit5: T2MH: Timer 2 High Byte Clock Select.
This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8-
bit timer mode. T2MH is ignored if Timer 2 is in any other mode.
0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 high byte uses the system clock.
Bit4: T2ML: Timer 2 Low Byte Clock Select.
This bit selects the clock supplied to Timer 2 . If Timer 2 is configured in split 8 -bit timer mode, this bit selects the clock supplied to the lower 8-bit timer.
0 : Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.
1: Timer 2 low byte uses the system clock.
Bit3: T1M: Timer 1 Clock Select.
This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.
0 : Timer 1 uses the clock defined by the prescale bits, SCA1-SCA0.
1: Timer 1 uses the system clock.
Bit2: TOM: Timer 0 Clock Select.
This bit selects the clock source supplied to Timer 0. TOM is ignored when C/T0 is set to logic 1.
0 : Counter/Timer 0 uses the clock defined by the prescale bits, SCA1-SCA0.
1: Counter/Timer 0 uses the system clock.
Bits1-0: SCA1-SCA0: Timer 0/1 Prescale Bits.
These bits control the division of the clock supplied to Timer 0 and Timer 1 if configured to use prescaled clock inputs.

SCA1	SCAO	Prescaled Clock
0	0	System clock divided by 12
0	1	System clock divided by 4
1	0	System clock divided by 48
1	1	External clock divided by 8

Note: External clock divided by 8 is synchronized with the system clock.

C8051F52x/F52xA/F53x/F53xA

SFR Definition 19.4. TLO: Timer 0 Low Byte

R/W	Reset Value								
								0000000	
Bit7 Bit6		Bit5 Bit4		Bit3 Bit2		Bit1	Bit0		
			Bit4			SFR Address: $0 \times 8 \mathrm{~A}$			
Bits 7-0: TLO: Timer 0 Low Byte.									
	TLO	r is th	byte	16-b					

SFR Definition 19.5. TL1: Timer 1 Low Byte

SFR Definition 19.6. TH0: Timer 0 High Byte

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bits 7-0: THO: Timer 0 High Byte.
The THO register is the high byte of the 16 -bit Timer 0.

SFR Definition 19.7. TH1: Timer 1 High Byte

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addr	0x8D

Bits 7-0: TH1: Timer 1 High Byte.
The TH1 register is the high byte of the 16 -bit Timer 1 .

C8051F52x/F52xA/F53x/F53xA

19.2. Timer 2

Timer 2 is a 16 -bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16 -bit auto-reload mode or (split) 8 -bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in Capture Mode to measure the RTC0 clock frequency or the External Oscillator clock frequency.

Timer 2 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator source divided by 8 . The external oscillator source divided by 8 is synchronized with the system clock.

19.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16 -bit timer register increments and overflows from 0xFFFF to $0 x 0000$, the 16 -bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 19.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE. 5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from $0 \times F F$ to 0×00.

Figure 19.4. Timer 2 16-Bit Mode Block Diagram

C8051F52x/F52xA/F53x/F53xA

19.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 19.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12 , or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	X	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock /8
1	X	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from $0 x F F$ to 0×00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 19.5. Timer 2 8-Bit Mode Block Diagram

C8051F52x/F52xA/F53x/F53xA

19.2.3. External Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4) and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator / 8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16 -bit auto-reload mode when using Capture Mode.

For example, if T2ML $=1 \mathrm{~b}$ and TF2CEN $=1 \mathrm{~b}$, Timer 2 will clock every SYSCLK and capture every external clock divided by 8 . If the SYSCLK is 24.5 MHz and the difference between two successive captures is 5984, then the external clock frequency is:

$$
\frac{24.5 \mathrm{MHz}}{(5984 / 8)}=0.032754 \mathrm{MHz} \text { or } 32.754 \mathrm{kHz}
$$

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

Figure 19.6. Timer 2 Capture Mode Block Diagram

C8051F52x/F52xA/F53x/F53xA

SFR Definition 19.8. TMR2CN: Timer 2 Control

R/W	Reset Value							
TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	-	T2XCLK	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	$\begin{aligned} & \text { Bit } \\ & \text { Addressable } \\ & \text { OxC8 } \end{aligned}$
Bit7:	TF2H: Timer 2 High Byte Overflow Flag. Set by hardware when the Timer 2 high byte overflows from 0xFF to $0 x 00$. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0×0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. TF2H is not automatically cleared by hardware and must be cleared by software.							
Bit6:	TF2L: Timer 2 Low Byte Overflow Flag. Set by hardware when the Timer 2 low byte overflows from 0xFF to 0×00. When this bit is set, an interrupt will be generated if TF2LEN is set and Timer 2 interrupts are enabled. TF2L will set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.							
Bit5:	TF2LEN: Timer 2 Low Byte Interrupt Enable. This bit enables/disables Timer 2 Low Byte interrupts. If TF2LEN is set and Timer 2 interrupts are enabled, an interrupt will be generated when the low byte of Timer 2 overflows. This bit should be cleared when operating Timer 2 in 16-bit mode. 0 : Timer 2 Low Byte interrupts disabled. 1: Timer 2 Low Byte interrupts enabled.							
Bit4:	TF2CEN. Timer 2 Capture Enable. 0 : Timer 2 capture mode disabled. 1: Timer 2 capture mode enabled.							
Bit3:	T2SPLIT: Timer 2 Split Mode Enable. When this bit is set, Timer 2 operates as two 8 -bit timers with auto-reload. 0 : Timer 2 operates in 16 -bit auto-reload mode. 1: Timer 2 operates as two 8 -bit auto-reload timers.							
Bit2:	TR2: Timer 2 Run Control. This bit enables/disables Timer 2. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in this mode. 0 : Timer 2 disabled. 1: Timer 2 enabled.							
$\begin{aligned} & \text { Bit1: } \\ & \text { Bit0: } \end{aligned}$	T2XCLK: Timer 2 External Clock Select. This bit selects the external clock source for Timer 2. If Timer 2 is in 8 -bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0 : Timer 2 external clock selection is the system clock divided by 12 . 1: Timer 2 external clock selection is the external clock divided by 8.							

C8051F52x/F52xA/F53x/F53xA

SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte

R/W	Reset Value							
								00000000
Bit7 Bit6		Bit5 Bit4		Bit3 Bit2		Bit1	Bit0	
		SFR Address: $0 \times C A$						
Bits7-0: TMR2RLL: Timer 2 Reload Register Low Byte. TMR2RLL holds the low byte of the reload value for Timer 2.								

SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte

| R/w Reset Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | 00000000 |
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| | | | | | | | SFR Address: $0 \times C B$ |
| Bits7-0: TMR2RLH: Timer 2 Reload Register High Byte. The TMR2RLH holds the high byte of the reload value for Timer 2. | | | | | | | |

SFR Definition 19.11. TMR2L: Timer 2 Low Byte

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Add	0xCC

Bits7-0: TMR2L: Timer 2 Low Byte.
In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8-bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 19.12. TMR2H Timer 2 High Byte

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bits7-0: TMR2H: Timer 2 High Byte.
In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-bit mode, TMR2H contains the 8-bit high byte timer value.

C8051F52x/F52xA/F53x/F53xA

20. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "14.1. Priority Crossbar Decoder" on page 120 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8 , Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of three modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "20.2. Capture/Compare Modules" on page 199). The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 20.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section "20.3. Watchdog Timer Mode" on page 205 for details.

Figure 20.1. PCA Block Diagram

C8051F52x/F52xA/F53x/F53xA

20.1. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCAOL and PCAOH. PCAOH is the high byte (MSB) of the 16 -bit counter/timer and PCAOL is the low byte (LSB). Reading PCAOL automatically latches the value of PCAOH into a "snapshot" register; the following PCAOH read accesses this "snapshot" register. Reading the PCAOL Register first guarantees an accurate reading of the entire 16-bit PCAO counter. Reading PCAOH or PCAOL does not disturb the counter operation. The CPS2-CPSO bits in the PCAOMD register select the timebase for the counter/timer as shown in Table 20.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCAOMD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCAOMD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCAO interrupts must be globally enabled before CF interrupts are recognized. PCAO interrupts are globally enabled by setting the EA bit (IE.7) and the EPCAO bit in EIE1 to logic 1). Clearing the CIDL bit in the PCAOMD register allows the PCA to continue normal operation while the CPU is in Idle mode.

Table 20.1. PCA Timebase Input Options

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate $=$ system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8^{*}

*Note: External clock divided by 8 is synchronized with the system clock.

Figure 20.2. PCA Counter/Timer Block Diagram

C8051F52x/F52xA/F53x/F53xA

20.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 20.2 summarizes the bit settings in the PCAOCPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCAOCPMn register enables the module's CCFn interrupt. Note: PCAO interrupts must be globally enabled before individual CCFn interrupts are recognized. PCAO interrupts are globally enabled by setting the EA bit and the EPCAO bit to logic 1. See Figure 20.3 for details on the PCA interrupt configuration.

Table 20.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
X	X	1	0	0	0	0	X	Capture triggered by positive edge on CEXn
X	X	0	1	0	0	0	X	Capture triggered by negative edge on CEXn
X	X	1	1	0	0	0	X	Capture triggered by transition on CEXn
X	1	0	0	1	0	0	X	Software Timer
X	1	0	0	1	1	0	X	High Speed Output
X	1	0	0	X	1	1	X	Frequency Output
0	1	0	0	X	0	1	X	8-Bit Pulse Width Modulator
1	1	0	0	X	0	1	X	16-Bit Pulse Width Modulator
$X=$ Don't Care								

Figure 20.3. PCA Interrupt Block Diagram

C8051F52x/F52xA/F53x/F53xA

20.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCAOCPHn). The CAPPn and CAPNn bits in the PCAOCPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 20.4. PCA Capture Mode Diagram
Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

C8051F52x/F52xA/F53x/F53xA

20.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCAOCPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCAOCPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCAOCPHn sets ECOMn to ' 1 '.

Figure 20.5. PCA Software Timer Mode Diagram

C8051F52x/F52xA/F53x/F53xA

20.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCAOCPLn) Setting the TOGn, MATn, and ECOMn bits in the PCAOCPMn register enables the HighSpeed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

Figure 20.6. PCA High-Speed Output Mode Diagram

Note: The initial state of the Toggle output is logic 1 and is initialized to this state when the module enters High Speed Output Mode.

C8051F52x/F52xA/F53x/F53xA

20.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 20.1.

$$
F_{C E X n}=\frac{F_{P C A}}{2 \times P C A 0 C P H n}
$$

Note: A value of 0×00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 20.1. Square Wave Frequency Output

Where $F_{P C A}$ is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCAOCPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCAOCPMn register.

Figure 20.7. PCA Frequency Output Mode

C8051F52x/F52xA/F53x/F53xA

20.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPHn capture/compare register. When the value in the low byte of the PCA counter/timer (PCAOL) is equal to the value in PCAOCPLn, the output on the CEXn pin will be set. When the count value in PCAOL overflows, the CEXn output will be reset (see Figure 20.8). Also, when the counter/timer low byte (PCAOL) overflows from 0xFF to 0x00, PCAOCPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8 -Bit PWM Mode is given by Equation 20.2.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

$$
\text { DutyCycle }=\frac{(256-P C A 0 C P H n)}{256}
$$

Equation 20.2. 8-Bit PWM Duty Cycle

Using Equation 20.2, the largest duty cycle is 100% ($\mathrm{PCAOCPHn}=0$), and the smallest duty cycle is 0.39% ($\mathrm{PCAOCPH}=0 x F F$). A 0\% duty cycle may be generated by clearing the ECOMn bit to ' 0 '.

Figure 20.8. PCA 8-Bit PWM Mode Diagram

C8051F52x/F52xA/F53x/F53xA

20.2.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16 -Bit PWM Mode is given by Equation 20.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

$$
\text { DutyCycle }=\frac{(65536-P C A 0 C P n)}{65536}
$$

Equation 20.3. 16-Bit PWM Duty Cycle

Using Equation 20.3, the largest duty cycle is 100% ($\mathrm{PCAOCPn}=0$), and the smallest duty cycle is 0.0015\% (PCA0CPn = 0xFFFF). A 0\% duty cycle may be generated by clearing the ECOMn bit to '0'.

Figure 20.9. PCA 16-Bit PWM Mode

20.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCAOCPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCAOMD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.

C8051F52x/F52xA/F53x/F53xA

20.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCAOL and PCAOH are not allowed.
- PCA clock source bits (CPS2-CPSO) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCAOCPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCAOCPH2 and PCAOH while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCAOH plus the offset held in PCA0CPL2 is loaded into PCAOCPH2 (See Figure 20.10).

Figure 20.10. PCA Module 2 with Watchdog Timer Enabled

C8051F52x/F52xA/F53x/F53xA

Note that the 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCAOL overflows before a reset. Up to 256 PCA clocks may pass before the first PCAOL overflow occurs, depending on the value of the PCAOL when the update is performed. The total offset is then given (in PCA clocks) by Equation 20.4, where PCAOL is the value of the PCAOL register at the time of the update.

$$
\text { Offset }=(256 \times P C A 0 C P L 2)+(256-P C A 0 L)
$$

Equation 20.4. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCAOL overflows while there is a match between PCAOCPH2 and PCAOH. Software may force a WDT reset by writing a ' 1 ' to the CCF2 flag (PCAOCN.2) while the WDT is enabled.

20.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- Disable the WDT by writing a '0' to the WDTE bit.
- \quad Select the desired PCA clock source (with the CPS2-CPS0 bits).
- Load PCA0CPL2 with the desired WDT update offset value.
- Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- Enable the WDT by setting the WDTE bit to ' 1 '.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCAOMD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCAO counter clock defaults to the system clock divided by 12, PCAOL defaults to 0x00, and PCA0CPL2 defaults to 0x00. Using Equation 20.4, this results in a WDT timeout interval of 3072 system clock cycles. Table 20.3 lists some example timeout intervals for typical system clocks.

C8051F52x/F52xA/F53x/F53xA

Table 20.3. Watchdog Timer Timeout Intervals ${ }^{1}$

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)
$24,500,000$	255	32.1
$24,500,000$	128	16.2
$24,500,000$	32	4.1
$18,432,000$	255	42.7
$18,432,000$	128	21.5
$18,432,000$	32	5.5
$11,059,200$	255	71.1
$11,059,200$	128	35.8
$11,059,200$	32	9.2
$3,062,500$	255	257
$3,062,500$	128	129.5
$3,062,500$	32	33.1
$191,406^{2}$	255	4109
$191,406^{2}$	128	2070
$191,406^{2}$	32	530
32,000	255	24576
32,000	128	12384
32,000	32	3168

Notes:

1. Assumes SYSCLK / 12 as the PCA clock source, and a PCAOL value of 0×00 at the update time.
2. Internal oscillator reset frequency.

C8051F52x/F52xA/F53x/F53xA

20.4. Register Descriptions for PCA

Following are detailed descriptions of the special function registers related to the operation of the PCA.
SFR Definition 20.1. PCAOCN: PCA Control

R/W	Reset Value							
CF	CR	Reserved	Reserved	Reserved	CCF2	CCF1	CCFO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable 0xD8
Bit7:	CF: PCA Counter/Timer Overflow Flag. Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.							
Bit6:	CR: PCA Counter/Timer Run Control. This bit enables/disables the PCA Counter/Timer. 0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.							
Bits5-3:	Reserved.							
Bit2:	CCF2: PCA Module 2 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.							
Bit1:	CCF1: PCA Module 1 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.							
Bit0:	This bit is set by hardware when a match or capture occurs. When the CCFO interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.							

C8051F52x/F52xA/F53x/F53xA

SFR Definition 20.2. PCAOMD: PCA Mode

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value
CIDL	WDTE	WDLCK	-	CPS2	CPS1	CPS0	ECF	01000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address: 0xD9								

Bit7: CIDL: PCA Counter/Timer Idle Control.
Specifies PCA behavior when CPU is in Idle Mode.
0: PCA continues to function normally while the system controller is in Idle Mode.
1: PCA operation is suspended while the system controller is in Idle Mode.
Bit6: WDTE: Watchdog Timer Enable
If this bit is set, PCA Module 2 is used as the watchdog timer.
0 : Watchdog Timer disabled.
1: PCA Module 2 enabled as Watchdog Timer.
Bit5: WDLCK: Watchdog Timer Lock
This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog
Timer may not be disabled until the next system reset.
0: Watchdog Timer Enable unlocked.
1: Watchdog Timer Enable locked.
Bit4: UNUSED. Read = 0b, Write = don't care
Bits3-1: CPS2-CPS0: PCA Counter/Timer Pulse Select.
These bits select the timebase source for the PCA counter.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate $=$ system clock divided by 4)
1	0	0	System clock
1	0	1	External clock divided by 8^{*}
1	1	0	Reserved
1	1	1	Reserved

*Note: External clock divided by 8 is synchronized with the system clock.
Bit0: ECF: PCA Counter/Timer Overflow Interrupt Enable.
This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.
0 : Disable the CF interrupt.
1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCAOCN.7) is set.
Note: When the WDTE bit is set to ' 1 ', the PCAOMD register cannot be modified. To change the contents of the PCAOMD register, the Watchdog Timer must first be disabled.

SFR Definition 20.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/M	set Value						
PWM16n	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000
Bit7	Bit6	Bit5				Bit1	Bit0	
SFR Address: PCAOCPM0: 0xDA, PCAOCPM1: 0xDB, PCAOCPM2: 0xDC								
Bit7:	PWM16n: 16-bit Pulse Width Modulation Enable. This bit selects 16 -bit mode when Pulse Width Modulation mode is enabled ($\mathrm{PWMn}=1$). 0 : 8-bit PWM selected. 1: 16-bit PWM selected.							
Bit6:	ECOMn: Comparator Function Enable. This bit enables/disables the comparator function for PCA module n . 0 : Disabled. 1: Enabled.							
Bit5:	CAPPn: Capture Positive Function Enable. This bit enables/disables the positive edge capture for PCA module n . 0 : Disabled. 1: Enabled.							
Bit4:	CAPNn: Capture Negative Function Enable. This bit enables/disables the negative edge capture for PCA module n. 0 : Disabled. 1: Enabled.							
Bit3:	MATn: Match Function Enable. This bit enables/disables the match function for PCA module n . When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in PCAOMD register to be set to logic 1. 0 : Disabled. 1: Enabled.							
Bit2:	TOGn: Toggle Function Enable. This bit enables/disables the toggle function for PCA module n. When enabled, matches of the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency Output Mode. 0 : Disabled. 1: Enabled.							
Bit1:	PWMn: Pulse Width Modulation Mode Enable. This bit enables/disables the PWM function for PCA module n. When enabled, a pulse width modulated signal is output on the CEXn pin. 8-bit PWM is used if PWM16n is cleared; 16 -bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode. 0 : Disabled. 1: Enabled.							
Bit0:	ECCFn: Capture/Compare Flag Interrupt Enable. This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt. 0 : Disable CCFn interrupts. 1: Enable a Capture/Compare Flag interrupt request when CCFn is set.							

C8051F52x/F52xA/F53x/F53xA

SFR Definition 20.4. PCAOL: PCA Counter/Timer Low Byte

SFR Definition 20.5. PCAOH: PCA Counter/Timer High Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							Addr	0xFA

Bits7-0: PCAOH: PCA Counter/Timer High Byte.
The PCAOH register holds the high byte (MSB) of the 16-bit PCA Counter/Timer.

SFR Definition 20.6. PCA0CPLn: PCA Capture Module Low Byte

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
Bit7	Bit6	Bit5	Bit4 Bit3		Bit2	Bit1	Bit0	
SFR Address: PCA0CPLO: 0xFB, PCA0CPL1: 0xEA, PCAOCPL2: 0xEB								
Bits7-0: PCA0CPLn: PCA Capture Module Low Byte. The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.								

SFR Definition 20.7. PCAOCPHn: PCA Capture Module High Byte

R/W	Reset Value 00000000							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address: PCAOCPH0: 0xFC, PCAOCPH1: 0xEA, PCAOCPH2: 0xEC								
Bits7-0: PCAOCPHn: PCA Capture Module High Byte. The PCAOCPH register holds the high byte (MSB) of the 16-bit capture module n.								

C8051F52x/F52xA/F53x/F53xA

21. Device Specific Behavior

This chapter contains behavioral differences between C8051F52x/F53x devices and C8051F52xA/F53xA devices.

These differences do not affect the functionality or performance of most systems and are described below.

21.1. Device Identification

The Part Number identifier on the top side of the device package can be used for decoding device information. On C8051F52xA/F53xA devices, the part number will end with the letter "A." C8051F52x/F53x devices will not have this letter.

Figures 21.1, 21.2, and 21.3 show how to find the part number on the top side of the device package.

Figure 21.1. Device Package - TSSOP 20

Figure 21.2. Device Package - QFN 20

C8051F52x/F52xA/F53x/F53xA

${ }^{\circ} 530$ A ANAB 628+

 This character identifies the device

Figure 21.3. Device Package - DFN 10

21.2. Reset Pin Behavior

The reset behavior of C8051F52x/F53x differs from C8051F52xA/F53xA devices. The differences affect the state of the RST pin during a VDD Monitor reset.

On C8051F52x/F53x devices, a $V_{D D}$ Monitor reset does not affect the state of the RST pin. On C8051F52xA/F53xA devices, a V_{DD} Monitor reset will pull the RST pin low for the duration of the brownout condition.

21.3. Reset Time Delay

The reset time delay on C8051F52x/F53x devices differs from C8051F52xA/F53xA devices.
On C8051F52x/F53x devices, the reset time delay will be as long as 80 ms following a power-on reset, meaning it can take up to 80 ms to begin code execution. Subsequent resets will not cause the long delay. On C8051F52xA/F53xA devices, the startup time is around $350 \mu \mathrm{~s}$.

21.4. UART Pins

The location of the pins used by the serial UART interface is different between C8051F52x/F53x and C8051F52xA/F53xA devices.

On C8051F52x/F53x devices, the TX and RX pins used by the UART interface are mapped to the P0.3 (TX) and P0.4 (RX) pins. On C8051F52xA/F53xA, the TX and RX pins used by the UART interface are mapped to the P0.4 (TX) and P0.5 (RX) pins.

Important Note: On C8051F52xA/53xA devices, the UART pins must be skipped if the UART is enabled in order for peripherals to appear on port pins beyond the UART on the crossbar. For example, with the SPI and UART enabled on the crossbar with the SPI on P1.0-P1.3, the UART pins must be skipped using POSKIP for the SPI pins to appear correctly.

C8051F52x/F52xA/F53x/F53xA

21.5. LIN

The LIN peripheral behavior in C8051F52x/F53x devices is different than the behavior of C8051F52xA/F53xA devices. The differences are:

21.5.1. Stop Bit Check

On C8051F52x/F53x devices, the stop bits of the fields in the LIN frame are not checked and no error is generated if the stop bits could not be sent or received correctly. On C8051F52xA/F53xA devices, the stop bits are checked, and an error will be generated if the stop bit was not sent or received correctly.

21.5.2. Synch Break and Synch Field Length Check

On C8051F52x/F53x devices, the check of sync field length versus sync break length is incorrect. On C8051F52xA/F53xA devices, the sync break length must be larger than 10 bit times (of the measured bit time) to enable the synchronization.

C8051F52x/F52xA/F53x/F53xA

22. C2 Interface

C8051F52x/F52xA/F53x/F53xA devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

22.1. C2 Interface Registers

The following describes the C 2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 22.1. C2ADD: C2 Address

Bits7-0: The C2ADD register is accessed via the C2 interface to select the target Data register for C2 Data Read and Data Write commands.

Address	Description
0×00	Selects the Device ID register for Data Read instructions (DEVICEID)
0×01	Selects the Revision ID register for Data Read instructions (REVID)
0×02	Selects the C2 Flash Programming Control register for Data Read/Write instructions (FPCTL)
$0 \times B 4$	Selects the C2 Flash Programming Data register for Data Read/Write instructions (FPDAT)

C2 Register Definition 22.2. DEVICEID: C2 Device ID

C8051F52x/F52xA/F53x/F53xA

C2 Register Definition 22.3. REVID: C2 Revision ID

C2 Register Definition 22.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 22.5. FPDAT: C2 Flash Programming Data

Bits7-0: FPDAT: C2 Flash Programming Data Register.
This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.

Code	Command
0×06	Flash Block Read
0×07	Flash Block Write
0×08	Flash Page Erase
0×03	Device Erase

C8051F52x/F52xA/F53x/F53xA

22.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C 2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (/RST) and C2D (P0.1 or P0.6) pins. In most applications, external resistors are required to isolate $C 2$ interface traffic from the user application. A typical isolation configuration is shown in Figure 22.1.

Figure 22.1. Typical C2 Pin Sharing

The configuration in Figure 22.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.
2. The /RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

C8051F52x/F52xA/F53x/F53xA

Document Change List

Revision 0.3 to 0.4

- Updated all specification tables.
- Added 'F52xA and 'F53xA information.
- Updated the Selectable Gain section in the ADC chapter.

■ Updated the External Crystal Example in the Oscillators chapter.

- Updated the LIN chapter.

Revision 0.4 to 0.5

- Updated all specification tables.
- Updated Figures 1.1, 1.2, 1.3, and 1.4.
- Updated Chapter 4 pinout diagrams and tables.

CONTACT InFORMATION

Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders

